Suppr超能文献

一种用于直接测量液体粘度的尖端耦合、双悬臂非谐振微系统。

A tip-coupled, two-cantilever, non-resonant microsystem for direct measurement of liquid viscosity.

作者信息

Tiwari Sudhanshu, Dangi Ajay, Pratap Rudra

机构信息

Center for Nano Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 47906 India.

Present Address: Oxide MEMS Lab, Purdue University, West Lafayette, USA.

出版信息

Microsyst Nanoeng. 2023 Mar 23;9:34. doi: 10.1038/s41378-023-00483-6. eCollection 2023.

Abstract

We report a non-resonant piezoelectric microelectromechanical cantilever system for the measurement of liquid viscosity. The system consists of two PiezoMEMS cantilevers in-line, with their free ends facing each other. The system is immersed in the fluid under test for viscosity measurement. One of the cantilevers is actuated using the embedded piezoelectric thin film to oscillate at a pre-selected non-resonant frequency. The second cantilever, the passive one, starts to oscillate due to the fluid-mediated energy transfer. The relative response of the passive cantilever is used as the metric for the fluid's kinematic viscosity. The fabricated cantilevers are tested as viscosity sensors by carrying out experiments in fluids with different viscosities. The viscometer can measure viscosity at a single frequency of choice, and hence some important considerations for frequency selection are discussed. A discussion on the energy coupling between the active and the passive cantilevers is presented. The novel PiezoMEMS viscometer architecture proposed in this work will overcome several challenges faced by state-of-the-art resonance MEMS viscometers, by enabling faster and direct measurement, straightforward calibration, and the possibility of shear rate-dependent viscosity measurement.

摘要

我们报道了一种用于测量液体粘度的非谐振压电微机电悬臂梁系统。该系统由两个串联的压电微机电悬臂梁组成,其自由端相互面对。该系统浸入被测流体中以进行粘度测量。其中一个悬臂梁利用嵌入式压电薄膜驱动,使其在预先选定的非谐振频率下振荡。第二个悬臂梁,即被动悬臂梁,由于流体介导的能量传递而开始振荡。被动悬臂梁的相对响应被用作流体运动粘度的度量标准。通过在不同粘度的流体中进行实验,对制造的悬臂梁作为粘度传感器进行了测试。该粘度计可以在选定的单一频率下测量粘度,因此讨论了频率选择的一些重要考虑因素。还介绍了主动悬臂梁和被动悬臂梁之间的能量耦合。本文提出的新型压电微机电粘度计架构将克服现有谐振微机电粘度计面临的几个挑战,实现更快、直接的测量、简单的校准以及测量与剪切速率相关粘度的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/686a/10033823/8a10455735bc/41378_2023_483_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验