Suppr超能文献

衰弱分位数回归模型在乳腺癌生存时间影响因素研究中的应用:一项多中心研究

Application of Frailty Quantile Regression Model to Investigate of Factors Survival Time in Breast Cancer: A Multi-Center Study.

作者信息

Yazdani Akram, Zeraati Hojjat, Haghighat Shahpar, Kaviani Ahmad, Yaseri Mehdi

机构信息

Department of Biostatistics and Epidemiology, Kashan University of Medical Sciences, Kashan, Iran.

Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Health Serv Res Manag Epidemiol. 2023 Mar 22;10:23333928231161951. doi: 10.1177/23333928231161951. eCollection 2023 Jan-Dec.

Abstract

BACKGROUND

The prognostic factors of survival can be accurately identified using data from different health centers, but the structure of multi-center data is heterogeneous due to the treatment of patients in different centers or similar reasons. In survival analysis, the shared frailty model is a common way to analyze multi-center data that assumes all covariates have homogenous effects. We used a censored quantile regression model for clustered survival data to study the impact of prognostic factors on survival time.

METHODS

This multi-center historical cohort study included 1785 participants with breast cancer from four different medical centers. A censored quantile regression model with a gamma distribution for the frailty term was used, and -value less than 0.05 considered significant.

RESULTS

The 10 and 50 percentiles (95% confidence interval) of survival time were 26.22 (23-28.77) and 235.07 (130-236.55) months, respectively. The effect of metastasis on the 10 and 50 percentiles of survival time was 20.67 and 69.73 months, respectively (all -value < 0.05). In the examination of the tumor grade, the effect of grades 2 and 3 tumors compare with the grade 1 tumor on the 50 percentile of survival time were 22.84 and 35.89 months, respectively (all -value < 0.05). The frailty variance was significant, which confirmed that, there was significant variability between the centers.

CONCLUSIONS

This study confirmed the usefulness of a censored quantile regression model for cluster data in studying the impact of prognostic factors on survival time and the control effect of heterogeneity due to the treatment of patients in different centers.

摘要

背景

利用来自不同健康中心的数据能够准确识别生存的预后因素,但由于不同中心对患者的治疗方式或类似原因,多中心数据的结构存在异质性。在生存分析中,共享脆弱模型是分析多中心数据的常用方法,该模型假定所有协变量具有同质效应。我们使用了一种用于聚类生存数据的删失分位数回归模型来研究预后因素对生存时间的影响。

方法

这项多中心历史性队列研究纳入了来自四个不同医疗中心的1785名乳腺癌患者。使用了一种带有脆弱项伽马分布的删失分位数回归模型,P值小于0.05被视为具有显著性。

结果

生存时间的第10和第50百分位数(95%置信区间)分别为26.22(23 - 28.77)个月和235.07(130 - 236.55)个月。转移对生存时间第10和第50百分位数的影响分别为20.67个月和69.73个月(所有P值<0.05)。在肿瘤分级检查中,2级和3级肿瘤与1级肿瘤相比,对生存时间第50百分位数的影响分别为22.84个月和35.89个月(所有P值<0.05)。脆弱方差具有显著性,这证实了各中心之间存在显著差异。

结论

本研究证实了删失分位数回归模型对于聚类数据在研究预后因素对生存时间的影响以及控制因不同中心对患者治疗导致异质性方面的有用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01af/10034283/09ac83d97e4f/10.1177_23333928231161951-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验