Suppr超能文献

用于优化治疗方案和最优策略设计的加权稀疏决策树的快速优化

Fast Optimization of Weighted Sparse Decision Trees for use in Optimal Treatment Regimes and Optimal Policy Design.

作者信息

Behrouz Ali, Lécuyer Mathias, Rudin Cynthia, Seltzer Margo

机构信息

University of British Columbia Vancouver, British Columbia, Canada.

Duke University Durham, North Carolina, USA.

出版信息

CEUR Workshop Proc. 2022 Oct;3318.

Abstract

Sparse decision trees are one of the most common forms of interpretable models. While recent advances have produced algorithms that fully optimize sparse decision trees for , that work does not address , because the algorithms cannot handle weighted data samples. Specifically, they rely on the discreteness of the loss function, which means that real-valued weights cannot be directly used. For example, none of the existing techniques produce policies that incorporate inverse propensity weighting on individual data points. We present three algorithms for efficient sparse weighted decision tree optimization. The first approach directly optimizes the weighted loss function; however, it tends to be computationally inefficient for large datasets. Our second approach, which scales more efficiently, transforms weights to integer values and uses data duplication to transform the weighted decision tree optimization problem into an unweighted (but larger) counterpart. Our third algorithm, which scales to much larger datasets, uses a randomized procedure that samples each data point with a probability proportional to its weight. We present theoretical bounds on the error of the two fast methods and show experimentally that these methods can be two orders of magnitude faster than the direct optimization of the weighted loss, without losing significant accuracy.

摘要

稀疏决策树是可解释模型最常见的形式之一。虽然最近的进展产生了一些算法,这些算法可以针对[具体目标]对稀疏决策树进行完全优化,但这项工作并未解决[具体问题],因为这些算法无法处理加权数据样本。具体来说,它们依赖于损失函数的离散性,这意味着不能直接使用实值权重。例如,现有的技术都没有产生能在单个数据点上纳入逆倾向加权的策略。我们提出了三种用于高效稀疏加权决策树优化的算法。第一种方法直接优化加权损失函数;然而,对于大型数据集,它在计算上往往效率低下。我们的第二种方法扩展效率更高,它将权重转换为整数值,并使用数据复制将加权决策树优化问题转化为一个无加权(但更大)的对应问题。我们的第三种算法可以扩展到更大的数据集,它使用一种随机过程,以与其权重成比例的概率对每个数据点进行采样。我们给出了两种快速方法误差的理论界限,并通过实验表明,这些方法比直接优化加权损失快两个数量级,且不会损失显著的准确性。

相似文献

2
Fast Sparse Decision Tree Optimization via Reference Ensembles.通过参考集成实现快速稀疏决策树优化
Proc AAAI Conf Artif Intell. 2022;36(9):9604-9613. doi: 10.1609/aaai.v36i9.21194. Epub 2022 Jun 28.
7
Optimal Sparse Regression Trees.最优稀疏回归树
Proc AAAI Conf Artif Intell. 2023 Jun;37(9):11270-11279. doi: 10.1609/aaai.v37i9.26334.

本文引用的文献

2
Fast Sparse Decision Tree Optimization via Reference Ensembles.通过参考集成实现快速稀疏决策树优化
Proc AAAI Conf Artif Intell. 2022;36(9):9604-9613. doi: 10.1609/aaai.v36i9.21194. Epub 2022 Jun 28.
7
Tree-based methods for individualized treatment regimes.用于个性化治疗方案的基于树的方法。
Biometrika. 2015;102(3):501-514. doi: 10.1093/biomet/asv028. Epub 2015 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验