Suppr超能文献

基于树的加权学习方法用于估计含删失数据的个体化治疗规则

Tree based weighted learning for estimating individualized treatment rules with censored data.

作者信息

Cui Yifan, Zhu Ruoqing, Kosorok Michael

机构信息

Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.

出版信息

Electron J Stat. 2017;11(2):3927-3953. doi: 10.1214/17-EJS1305. Epub 2017 Oct 18.

Abstract

Estimating individualized treatment rules is a central task for personalized medicine. [23] and [22] proposed outcome weighted learning to estimate individualized treatment rules directly through maximizing the expected outcome without modeling the response directly. In this paper, we extend the outcome weighted learning to right censored survival data without requiring either inverse probability of censoring weighting or semiparametric modeling of the censoring and failure times as done in [26]. To accomplish this, we take advantage of the tree based approach proposed in [28] to nonparametrically impute the survival time in two different ways. The first approach replaces the reward of each individual by the expected survival time, while in the second approach only the censored observations are imputed by their conditional expected failure times. We establish consistency and convergence rates for both estimators. In simulation studies, our estimators demonstrate improved performance compared to existing methods. We also illustrate the proposed method on a phase III clinical trial of non-small cell lung cancer.

摘要

估计个体化治疗规则是个性化医疗的核心任务。[23]和[22]提出了结果加权学习法,通过最大化预期结果直接估计个体化治疗规则,而无需直接对反应进行建模。在本文中,我们将结果加权学习法扩展到右删失生存数据,无需像[26]那样进行删失加权的逆概率计算或对删失时间和失败时间进行半参数建模。为实现这一点,我们利用[28]中提出的基于树的方法,以两种不同方式对生存时间进行非参数估计。第一种方法用预期生存时间替代每个个体的奖励,而在第二种方法中,仅对删失观测值用其条件预期失败时间进行估计。我们建立了两种估计器的一致性和收敛速度。在模拟研究中,与现有方法相比,我们的估计器表现出更好的性能。我们还在一项非小细胞肺癌的III期临床试验中展示了所提出 的方法。

相似文献

1
Tree based weighted learning for estimating individualized treatment rules with censored data.
Electron J Stat. 2017;11(2):3927-3953. doi: 10.1214/17-EJS1305. Epub 2017 Oct 18.
2
Model selection for survival individualized treatment rules using the jackknife estimator.
BMC Med Res Methodol. 2022 Dec 22;22(1):328. doi: 10.1186/s12874-022-01811-6.
3
Doubly Robust Learning for Estimating Individualized Treatment with Censored Data.
Biometrika. 2015 Mar 1;102(1):151-168. doi: 10.1093/biomet/asu050.
4
Estimating individualized treatment rules by optimizing the adjusted probability of a longer survival.
Stat Methods Med Res. 2024 Sep;33(9):1517-1530. doi: 10.1177/09622802241262525. Epub 2024 Jul 25.
5
Estimation in optimal treatment regimes based on mean residual lifetimes with right-censored data.
Biom J. 2023 Dec;65(8):e2200340. doi: 10.1002/bimj.202200340. Epub 2023 Oct 3.
7
Greedy outcome weighted tree learning of optimal personalized treatment rules.
Biometrics. 2017 Jun;73(2):391-400. doi: 10.1111/biom.12593. Epub 2016 Oct 4.
8
A parsimonious personalized dose-finding model via dimension reduction.
Biometrika. 2021 Sep;108(3):643-659. doi: 10.1093/biomet/asaa087. Epub 2020 Oct 20.
10
Additive hazards regression with censoring indicators missing at random.
Can J Stat. 2010 Sep;38(3):333-351. doi: 10.1002/cjs.10072.

引用本文的文献

2
M-Learning for Individual Treatment Rule With Survival Outcomes.
Stat Med. 2025 May;44(10-12):e70093. doi: 10.1002/sim.70093.
3
Selection of the optimal personalized treatment from multiple treatments with right-censored multivariate outcome measures.
J Appl Stat. 2023 Jan 10;51(5):891-912. doi: 10.1080/02664763.2022.2164759. eCollection 2024.
5
Survival analysis using deep learning with medical imaging.
Int J Biostat. 2023 Jun 14;20(1):1-12. doi: 10.1515/ijb-2022-0113. eCollection 2024 May 1.
7
Model selection for survival individualized treatment rules using the jackknife estimator.
BMC Med Res Methodol. 2022 Dec 22;22(1):328. doi: 10.1186/s12874-022-01811-6.
9
Multi-Armed Angle-Based Direct Learning for Estimating Optimal Individualized Treatment Rules With Various Outcomes.
J Am Stat Assoc. 2020;115(530):678-691. doi: 10.1080/01621459.2018.1529597. Epub 2019 Apr 11.
10
A semiparametric instrumental variable approach to optimal treatment regimes under endogeneity.
J Am Stat Assoc. 2021;116(533):162-173. doi: 10.1080/01621459.2020.1783272. Epub 2020 Aug 4.

本文引用的文献

1
Residual Weighted Learning for Estimating Individualized Treatment Rules.
J Am Stat Assoc. 2017;112(517):169-187. doi: 10.1080/01621459.2015.1093947. Epub 2017 May 3.
2
Tree-based methods for individualized treatment regimes.
Biometrika. 2015;102(3):501-514. doi: 10.1093/biomet/asv028. Epub 2015 Jul 15.
3
Statistical Methods for Establishing Personalized Treatment Rules in Oncology.
Biomed Res Int. 2015;2015:670691. doi: 10.1155/2015/670691. Epub 2015 Sep 13.
4
New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes.
J Am Stat Assoc. 2015;110(510):583-598. doi: 10.1080/01621459.2014.937488.
5
Doubly Robust Learning for Estimating Individualized Treatment with Censored Data.
Biometrika. 2015 Mar 1;102(1):151-168. doi: 10.1093/biomet/asu050.
6
On optimal treatment regimes selection for mean survival time.
Stat Med. 2015 Mar 30;34(7):1169-84. doi: 10.1002/sim.6397. Epub 2014 Dec 16.
7
Dynamic treatment regimes: technical challenges and applications.
Electron J Stat. 2014;8(1):1225-1272. doi: 10.1214/14-ejs920.
8
Predicting the restricted mean event time with the subject's baseline covariates in survival analysis.
Biostatistics. 2014 Apr;15(2):222-33. doi: 10.1093/biostatistics/kxt050. Epub 2013 Nov 29.
9
Estimating Individualized Treatment Rules Using Outcome Weighted Learning.
J Am Stat Assoc. 2012 Sep 1;107(449):1106-1118. doi: 10.1080/01621459.2012.695674.
10
Recursively Imputed Survival Trees.
J Am Stat Assoc. 2012;107(497):331-340. doi: 10.1080/01621459.2011.637468. Epub 2011 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验