Dai Wei, Pang Ji-Wei, Ding Jie, Wang Yu-Qian, Zhang Lu-Yan, Ren Nan-Qi, Yang Shan-Shan
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China.
China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, China.
Front Microbiol. 2023 Mar 9;14:1128233. doi: 10.3389/fmicb.2023.1128233. eCollection 2023.
Pharmaceutical wastewater frequently contains high levels of toxic pollutants. If they are discharged untreated, they pose a threat to the environment. The traditional activated sludge process and the advanced oxidation process do not sufficiently remove toxic and conventional pollutants from pharmaceutical wastewater treatment plants (PWWTPs).
We designed a pilot-scale reaction system to reduce toxic organic pollutants and conventional pollutants from pharmaceutical wastewater during the biochemical reaction stage. This system included a continuous stirred tank reactor (CSTR), microbial electrolysis cells (MECs), an expanded sludge bed reactor (EGSB), and a moving bed biofilm reactor (MBBR). We used this system to further investigate the benzothiazole degradation pathway.
The system effectively degraded the toxic pollutants (benzothiazole, pyridine, indole, and quinoline) and the conventional chemicals (COD, NH -N, TN). During the stable operation of the pilot-scale plant, the total removal rates of benzothiazole, indole, pyridine, and quinoline were 97.66, 94.13, 79.69, and 81.34%, respectively. The CSTR and MECs contributed the most to the removal of toxic pollutants, while the EGSB and MBBR contributed less to the removal of the four toxic pollutants. Benzothiazoles can be degraded two pathways: the benzene ring-opening reaction and the heterocyclic ring-opening reaction. The heterocyclic ring-opening reaction was more important in degrading the benzothiazoles in this study.
This study provides feasible design alternatives for PWWTPs to remove both toxic and conventional pollutants at the same time.
制药废水通常含有高浓度的有毒污染物。如果未经处理就排放,它们会对环境构成威胁。传统的活性污泥法和高级氧化法不能充分去除制药废水处理厂(PWWTPs)中的有毒和常规污染物。
我们设计了一个中试规模的反应系统,以在生化反应阶段减少制药废水中的有毒有机污染物和常规污染物。该系统包括一个连续搅拌槽式反应器(CSTR)、微生物电解池(MECs)、膨胀污泥床反应器(EGSB)和移动床生物膜反应器(MBBR)。我们使用该系统进一步研究苯并噻唑的降解途径。
该系统有效降解了有毒污染物(苯并噻唑、吡啶、吲哚和喹啉)和常规化学物质(化学需氧量、氨氮、总氮)。在中试工厂稳定运行期间,苯并噻唑、吲哚、吡啶和喹啉的总去除率分别为97.66%、94.13%、79.69%和81.34%。CSTR和MECs对有毒污染物的去除贡献最大,而EGSB和MBBR对四种有毒污染物的去除贡献较小。苯并噻唑可以通过两条途径降解:苯环开环反应和杂环开环反应。在本研究中,杂环开环反应在降解苯并噻唑方面更为重要。
本研究为PWWTPs同时去除有毒和常规污染物提供了可行的设计方案。