Suppr超能文献

用于法医黑盒研究中错误率的分层贝叶斯无应答模型。

Hierarchical Bayesian non-response models for error rates in forensic black-box studies.

机构信息

Department of Statistics, Iowa State University, Ames, IA, USA.

Center for Statistics and Applications in Forensic Science, Ames, IA, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2023 May 15;381(2247):20220157. doi: 10.1098/rsta.2022.0157. Epub 2023 Mar 27.

Abstract

Forensic science plays a critical role in the United States criminal legal system. Historically, however, most feature-based fields of forensic science, including firearms examination and latent print analysis, have not been shown to be scientifically valid. Recently, black-box studies have been proposed as a means of assessing whether these feature-based disciplines are valid, at least in terms of accuracy, reproducibility and repeatability. In these studies, forensic examiners frequently either do not respond to every test item or select an answer equivalent to 'don't know'. Current black-box studies do not account for these high levels of missingness in statistical analyses. Unfortunately, the authors of black-box studies typically do not share the data necessary to meaningfully adjust estimates for the high proportion of missing responses. Borrowing from work in the context of small area estimation, we propose the use of hierarchical Bayesian models that do not require auxiliary data to adjust for non-response. Using these models, we offer the first formal exploration of the impact that missingness is playing in error rate estimations reported in black-box studies. We show that error rates currently reported as low as 0.4% could actually be at least 8.4% in models accounting for non-response where inconclusive decisions are counted as correct, and over 28% when inconclusives are counted as missing responses. These proposed models are not the answer to the missingness problem in black-box studies. But with the release of auxiliary information, they can be the foundation for new methodologies to adjust for missingness in error rate estimations. This article is part of the theme issue 'Bayesian inference: challenges, perspectives, and prospects'.

摘要

法庭科学在美国刑事司法系统中发挥着至关重要的作用。然而,从历史上看,法庭科学的大多数基于特征的领域,包括枪支检验和潜在指纹分析,都没有被证明在科学上是有效的。最近,黑盒研究被提议作为评估这些基于特征的学科是否有效的一种手段,至少在准确性、可重复性和可再现性方面是如此。在这些研究中,法庭鉴定人经常不回答每个测试项目,或者选择等同于“不知道”的答案。当前的黑盒研究在统计分析中没有考虑到这些高水平的缺失数据。不幸的是,黑盒研究的作者通常不共享必要的数据,无法对高比例的缺失响应进行有意义的调整。我们借鉴小区域估计背景下的工作,提出使用层次贝叶斯模型,这些模型不需要辅助数据来调整非响应。使用这些模型,我们首次正式探讨了缺失数据在黑盒研究中报告的错误率估计中所起的作用。我们表明,目前报告的低至 0.4%的错误率实际上可能至少为 8.4%,在计入不确定决策为正确的情况下,在计入不确定决策为缺失响应的情况下,错误率可能超过 28%。这些提议的模型并不是解决黑盒研究中缺失数据问题的答案。但是,随着辅助信息的发布,它们可以为调整错误率估计中缺失数据的新方法提供基础。本文是主题为“贝叶斯推理:挑战、观点和前景”的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c29/10041348/99ee19290834/rsta20220157f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验