Suppr超能文献

基于错误率研究对枪支比对强度进行量化。

Quantifying the strength of firearms comparisons based on error rate studies.

作者信息

Aggadi Nada, Zeller Kimberley, Busey Tom

机构信息

Department of Psychological and Brain Sciences, Indiana University-Bloomington, Bloomington, Indiana, USA.

Houston Forensic Science Center, Houston, Texas, USA.

出版信息

J Forensic Sci. 2025 Jan;70(1):84-97. doi: 10.1111/1556-4029.15646. Epub 2024 Oct 30.

Abstract

Forensic firearms and tool mark examiners compare bullets and cartridge cases to assess whether they originate from the same source or different sources. To communicate their observations, they rely on predefined conclusion scales ranging from Identification to Elimination. However, these terms have not been calibrated against the actual strength of the evidence except indirectly through error rate studies. The present research reanalyzes the findings of firearms and cartridge case comparisons from error rate studies to generate a quantitative measure of the strength of the evidence for each comparison. We use an ordered probit model to summarize the distribution of responses of examiners and aggregate the data for all comparisons to produce a set of likelihood ratios. The likelihood ratios can be as low as less than 10, which does not seem to justify the current articulation scale that may imply a strength of evidence of 10,000 or greater. This suggests that examiners are using language that overstates the strength of the evidence by several orders of magnitude.

摘要

法医枪支和工具痕迹鉴定人员通过比较子弹和弹壳来评估它们是否来自同一来源或不同来源。为了传达他们的观察结果,他们依靠从认定到排除的预定义结论量表。然而,这些术语除了通过错误率研究间接进行校准外,尚未根据证据的实际强度进行校准。本研究重新分析了错误率研究中枪支和弹壳比较的结果,以生成每次比较证据强度的定量度量。我们使用有序概率模型来总结鉴定人员的反应分布,并汇总所有比较的数据以生成一组似然比。似然比可能低至小于10,这似乎无法证明当前的表述量表是合理的,因为该量表可能意味着证据强度为10000或更高。这表明鉴定人员使用的语言夸大了证据强度达几个数量级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a59f/11693517/1c117d2a5a77/JFO-70-84-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验