Department of Statistics, Oxford University, Oxford, UK.
Ecole Polytechnique, Centre de Mathématiques Appliquées, CNRS UMR 7641, Palaiseau, France.
Philos Trans A Math Phys Eng Sci. 2023 May 15;381(2247):20220147. doi: 10.1098/rsta.2022.0147. Epub 2023 Mar 27.
Latent variable models are a popular class of models in statistics. Combined with neural networks to improve their expressivity, the resulting deep latent variable models have also found numerous applications in machine learning. A drawback of these models is that their likelihood function is intractable so approximations have to be carried out to perform inference. A standard approach consists of maximizing instead an evidence lower bound (ELBO) obtained based on a variational approximation of the posterior distribution of the latent variables. The standard ELBO can, however, be a very loose bound if the variational family is not rich enough. A generic strategy to tighten such bounds is to rely on an unbiased low-variance Monte Carlo estimate of the evidence. We review here some recent importance sampling, Markov chain Monte Carlo and sequential Monte Carlo strategies that have been proposed to achieve this. This article is part of the theme issue 'Bayesian inference: challenges, perspectives, and prospects'.
潜变量模型是统计学中一类流行的模型。与神经网络相结合以提高其表达能力,由此产生的深度潜变量模型在机器学习中也找到了许多应用。这些模型的一个缺点是它们的似然函数是不可计算的,因此必须进行近似以进行推理。一种标准的方法是最大化基于对潜在变量后验分布的变分逼近的证据下限(ELBO)。然而,如果变分族不够丰富,标准的 ELBO 可能是一个非常宽松的界限。收紧这种界限的一般策略是依赖于证据的无偏低方差蒙特卡罗估计。本文回顾了一些最近提出的重要抽样、马尔可夫链蒙特卡罗和序贯蒙特卡罗策略,以实现这一目标。本文是“贝叶斯推理:挑战、观点和前景”主题问题的一部分。