Department of Chemistry, Drug Design and Synthesis Laboratory, Jamia Millia Islamia, New Delhi, India.
International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
J Biomol Struct Dyn. 2023;41(24):15485-15506. doi: 10.1080/07391102.2023.2188959. Epub 2023 Mar 27.
Malaria still threatens half the globe population despite successful Artemisinin-based combination therapy. One of the reasons for our inability to eradicate malaria is the emergence of resistance to current antimalarials. Thus, there is a need to develop new antimalarials targeting proteins. The present study reported the design and synthesis of 4, 6 and 7-substituted quinoline-3-carboxylates - and carboxylic acids - for the inhibition of N-Myristoyltransferases (NMTs) using computational biology tools followed by chemical synthesis and functional analysis. The designed compounds exhibited a glide score of -9.241 to -6.960 kcal/mol for NMT and -7.538 kcal/mol for NMT model proteins. Development of the synthesized compounds was established via NMR, HRMS and single crystal X-ray diffraction study. The synthesized compounds were evaluated for their antimalarial efficacy against CQ-sensitive 3D7 and CQ-resistant INDO lines followed by cell toxicity evaluation. results highlighted the compound ethyl 6-methyl-4-(naphthalen-2-yloxy)quinoline-3-carboxylate () as a promising inhibitor with a glide score of -9.084 kcal/mol for NMT and -6.975 kcal/mol for NMT with IC values of 6.58 µM for 3D7 line. Furthermore, compounds and exhibited excellent anti-plasmodial activity (3D7 IC = 3.96, 6.71 µM, and INDO IC = 6.38, 2.8 µM, respectively). The conformational stability of with the active site of the target protein was analyzed through MD simulation and was found concordance with results. Thus, our study provides scaffolds for the development of potent antimalarials targeting both and .Communicated by Ramaswamy H. Sarma.
尽管青蒿素为基础的联合疗法取得了成功,但疟疾仍然威胁着全球一半的人口。我们无法消灭疟疾的原因之一是当前抗疟药物出现了耐药性。因此,需要开发针对蛋白质的新抗疟药物。本研究报告了使用计算生物学工具设计和合成 4、6 和 7 取代喹啉-3-羧酸酯和羧酸酯,以抑制 N-豆蔻酰转移酶(NMT),然后进行化学合成和功能分析。设计的化合物对 NMT 和 NMT 模型蛋白的结合能分别为-9.241 至-6.960 kcal/mol 和-7.538 kcal/mol。通过 NMR、HRMS 和单晶 X 射线衍射研究确定了合成化合物的结构。通过评价合成化合物对 CQ 敏感的 3D7 和 CQ 耐药的 INDO 系的抗疟疗效,以及细胞毒性评价,建立了合成化合物的发展。结果突出了化合物乙基 6-甲基-4-(萘-2-氧基)喹啉-3-羧酸酯()作为一种有前途的抑制剂,对 NMT 的结合能为-9.084 kcal/mol,对 NMT 的结合能为-6.975 kcal/mol,对 3D7 系的 IC 值为 6.58 μM。此外,化合物和表现出优异的抗疟活性(3D7 IC = 3.96、6.71 μM 和 INDO IC = 6.38、2.8 μM)。通过 MD 模拟分析了化合物与靶蛋白活性部位的构象稳定性,结果与实验结果一致。因此,我们的研究为开发针对和的有效抗疟药物提供了支架。由 Ramaswamy H. Sarma 传达。