American Life Science Pharmaceuticals, La Jolla, CA, USA.
Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.
J Alzheimers Dis. 2023;93(1):33-46. doi: 10.3233/JAD-221005.
The lysosomal cysteine protease cathepsin B (CTSB) has been suggested as a biomarker for Alzheimer's disease (AD) because elevated serum CTSB in AD patients has been found to correlate with cognitive dysfunction. Furthermore, CTSB gene knockout (KO) in non-transgenic and transgenic AD animal models showed that elimination of CTSB improved memory deficits. However, conflicting CTSB KO results on amyloid-β (Aβ) pathology in transgenic AD models have been reported. The conflict is resolved here as likely being due to the different hAβPP transgenes used in the different AD mouse models. CTSB gene KO reduced wild-type (Wt) β-secretase activity, brain Aβ, pyroglutamate-Aβ, amyloid plaque, and memory deficits in models that used cDNA transgenes expressing hAβPP isoform 695. But in models that used mutated mini transgenes expressing hAβPP isoforms 751 and 770, CTSB KO had no effect on Wt β-secretase activity and slightly increased brain Aβ. All models expressed the AβPP transgenes in neurons. These conflicting results in Wt β-secretase activity models can be explained by hAβPP isoform specific cellular expression, proteolysis, and subcellular processing. CTSB KO had no effect on Swedish mutant (Swe) β-secretase activity in hAβPP695 and hAβPP751/770 models. Different proteolytic sensitivities for hAβPP with Wt versus Swe β-secretase site sequences may explain the different CTSB β-secretase effects in hAβPP695 models. But since the vast majority of sporadic AD patients have Wt β-secretase activity, the CTSB effects on Swe β-secretase activity are of little importance to the general AD population. As neurons naturally produce and process hAβPP isoform 695 and not the 751 and 770 isoforms, only the hAβPP695 Wt models mimic the natural neuronal hAβPP processing and Aβ production occurring in most AD patients. Significantly, these CTSB KO findings in the hAβPP695 Wt models demonstrate that CTSB participates in memory deficits and production of pyroglutamate-Aβ (pyroglu-Aβ), which provide rationale for future investigation of CTSB inhibitors in AD therapeutics development.
溶酶体半胱氨酸蛋白酶 cathepsin B (CTSB) 已被提议作为阿尔茨海默病 (AD) 的生物标志物,因为 AD 患者血清中的 CTSB 升高与认知功能障碍相关。此外,非转基因和转基因 AD 动物模型中的 CTSB 基因敲除 (KO) 表明消除 CTSB 可改善记忆缺陷。然而,在转基因 AD 模型中,CTSB KO 对淀粉样蛋白-β (Aβ) 病理学的结果存在矛盾。这种矛盾在这里得到了解决,可能是由于不同的 AD 小鼠模型中使用了不同的 hAβPP 转基因。CTSB 基因 KO 降低了野生型 (Wt) β-分泌酶活性、大脑 Aβ、焦谷氨酸-Aβ、淀粉样斑块和模型中使用 cDNA 转基因表达 hAβPP 同工型 695 的记忆缺陷。但在使用突变 mini 转基因表达 hAβPP 同工型 751 和 770 的模型中,CTSB KO 对 Wt β-分泌酶活性没有影响,反而略微增加了大脑 Aβ。所有模型都在神经元中表达 AβPP 转基因。这些在 Wt β-分泌酶活性模型中的矛盾结果可以通过 hAβPP 同工型特异性细胞表达、蛋白水解和亚细胞加工来解释。CTSB KO 对 hAβPP695 和 hAβPP751/770 模型中的瑞典突变 (Swe) β-分泌酶活性没有影响。hAβPP 与 Wt 相比具有不同的 Swe β-分泌酶位点序列的不同蛋白水解敏感性可能解释了 hAβPP695 模型中 CTSB β-分泌酶作用的不同。但是,由于绝大多数散发性 AD 患者具有 Wt β-分泌酶活性,因此 CTSB 对 Swe β-分泌酶活性的影响对一般 AD 人群意义不大。由于神经元自然产生和加工 hAβPP 同工型 695,而不是 751 和 770 同工型,只有 hAβPP695 Wt 模型模拟了大多数 AD 患者中发生的天然神经元 hAβPP 加工和 Aβ 产生。重要的是,这些在 hAβPP695 Wt 模型中的 CTSB KO 发现表明 CTSB 参与了记忆缺陷和焦谷氨酸-Aβ(pyroglu-Aβ)的产生,这为未来在 AD 治疗开发中研究 CTSB 抑制剂提供了依据。