CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
mBio. 2023 Apr 25;14(2):e0321822. doi: 10.1128/mbio.03218-22. Epub 2023 Mar 27.
Cell polarity development is the prerequisite for cell differentiation and generating biodiversity. In the model bacterium Caulobacter crescentus, the polarization of the scaffold protein PopZ during the predivisional cell stage plays a central role in asymmetric cell division. However, our understanding of the spatiotemporal regulation of PopZ localization remains incomplete. In the current study, a direct interaction between PopZ and the new pole scaffold PodJ is revealed, which plays a primary role in triggering the new pole accumulation of PopZ. The coiled-coil 4-6 domain in PodJ is responsible for interacting with PopZ and promoting PopZ transition from monopolar to bipolar . Elimination of the PodJ-PopZ interaction impairs the PopZ-mediated chromosome segregation by affecting both the positioning and partitioning of the ParB- centromere. Further analyses of PodJ and PopZ from other bacterial species indicate this scaffold-scaffold interaction may represent a widespread strategy for spatiotemporal regulation of cell polarity in bacteria. Caulobacter crescentus is a well-established bacterial model to study asymmetric cell division for decades. During cell development, the polarization of scaffold protein PopZ from monopolar to bipolar plays a central role in C. crescentus asymmetric cell division. Nevertheless, the spatiotemporal regulation of PopZ has remained unclear. Here, we demonstrate that the new pole scaffold PodJ functions as a regulator in triggering PopZ bipolarization. The primary regulatory role of PodJ was demonstrated in parallel by comparing it with other known PopZ regulators, such as ZitP and TipN. Physical interaction between PopZ and PodJ ensures the timely accumulation of PopZ at the new cell pole and the inheritance of the polarity axis. Disruption of the PodJ-PopZ interaction impaired PopZ-mediated chromosome segregation and may lead to a decoupling of DNA replication from cell division during the cell cycle. Together, the scaffold-scaffold interaction may provide an underlying infrastructure for cell polarity development and asymmetric cell division.
细胞极性的发展是细胞分化和产生生物多样性的前提。在模式细菌新月柄杆菌中,支架蛋白 PopZ 在细胞分裂前期的极化在不对称细胞分裂中起着核心作用。然而,我们对 PopZ 定位的时空调节的理解仍然不完整。在本研究中,揭示了 PopZ 与新极支架 PodJ 之间的直接相互作用,这在触发 PopZ 新极积累中起着主要作用。PodJ 的卷曲螺旋 4-6 结构域负责与 PopZ 相互作用,并促进 PopZ 从单极到双极的转变。消除 PodJ-PopZ 相互作用会通过影响 ParB-着丝粒的定位和分配,从而损害 PopZ 介导的染色体分离。对来自其他细菌物种的 PodJ 和 PopZ 的进一步分析表明,这种支架-支架相互作用可能代表了细菌中细胞极性时空调节的一种广泛策略。
新月柄杆菌是研究不对称细胞分裂的一个成熟的细菌模型已有数十年。在细胞发育过程中,支架蛋白 PopZ 从单极到双极的极化在新月柄杆菌不对称细胞分裂中起着核心作用。然而,PopZ 的时空调节仍然不清楚。在这里,我们证明了新极支架 PodJ 作为触发 PopZ 双极化的调节剂发挥作用。PodJ 的主要调节作用是通过与其他已知的 PopZ 调节剂(如 ZitP 和 TipN)进行比较来证明的。PopZ 和 PodJ 之间的物理相互作用确保了 PopZ 及时积累在新的细胞极,并继承了极性轴。破坏 PodJ-PopZ 相互作用会损害 PopZ 介导的染色体分离,并且可能导致细胞周期中 DNA 复制与细胞分裂的解耦。支架-支架相互作用可能为细胞极性的发展和不对称细胞分裂提供了基础。