Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India.
Sciex, Bangalore, India.
Metabolomics. 2023 Mar 27;19(4):24. doi: 10.1007/s11306-023-01983-2.
Taking into consideration the challenges of lipid analytics, present study aims to design the best high-throughput workflow for detection and annotation of lipids.
Serum lipid profiling was performed on CSH-C18 and EVO-C18 columns using UHPLC Q-TOF-MS and generated lipid features were annotated based on m/z and fragment ion using different software.
Better detection of features was observed in CSH-C18 than EVO-C18 with enhanced resolution except for Glycerolipids (triacylglycerols) and Sphingolipids (sphingomyelin).
The study revealed an optimized untargeted Lipidomics-workflow with comprehensive lipid profiling (CSH-C18 column) and confirmatory annotation (LipidBlast).
考虑到脂质分析的挑战,本研究旨在设计最佳的高通量工作流程,以检测和注释脂质。
使用 UHPLC Q-TOF-MS 在 CSH-C18 和 EVO-C18 柱上进行血清脂质分析,根据质荷比(m/z)和碎片离子使用不同的软件对生成的脂质特征进行注释。
与 EVO-C18 相比,CSH-C18 柱对特征的检测更好,分辨率更高,但甘油酯(三酰基甘油)和鞘脂(神经酰胺)除外。
该研究揭示了一种优化的非靶向脂质组学工作流程,具有全面的脂质分析(CSH-C18 柱)和确证性注释(LipidBlast)。