Genesupport, Lausanne, Switzerland.
Bioinformatics Competence Center, EPFL and Unil, Lausanne, Switzerland.
PLoS One. 2023 Mar 27;18(3):e0281661. doi: 10.1371/journal.pone.0281661. eCollection 2023.
All life forms on earth ultimately descended from a primordial population dubbed the last universal common ancestor or LUCA via Darwinian evolution. Extant living systems share two salient functional features, a metabolism extracting and transforming energy required for survival, and an evolvable, informational polymer-the genome-conferring heredity. Genome replication invariably generates essential and ubiquitous genetic parasites. Here we model the energetic, replicative conditions of LUCA-like organisms and their parasites, as well as adaptive problem solving of host-parasite pairs. We show using an adapted Lotka-Volterra frame-work that three host-parasite pairs-individually a unit of a host and a parasite that is itself parasitized, therefore a nested parasite pair-are sufficient for robust and stable homeostasis, forming a life cycle. This nested parasitism model includes competition and habitat restriction. Its catalytic life cycle efficiently captures, channels and transforms energy, enabling dynamic host survival and adaptation. We propose a Malthusian fitness model for a quasispecies evolving through a host-nested parasite life cycle with two core features, rapid replacement of degenerate parasites and increasing evolutionary stability of host-nested parasite units from one to three pairs.
地球上所有的生命形式最终都源自一个原始种群,被称为最后的普遍共同祖先或 LUCA,通过达尔文式进化而来。现存的生命系统共享两个显著的功能特征,即代谢作用,提取和转化生存所需的能量,以及可进化的信息聚合物——基因组,赋予遗传。基因组复制不可避免地会产生必需且无处不在的遗传寄生虫。在这里,我们对 LUCA 样生物及其寄生虫的能量、复制条件,以及宿主-寄生虫对的适应性问题解决进行了建模。我们使用经过改编的 Lotka-Volterra 框架表明,三个宿主-寄生虫对——单独的宿主和自身被寄生的寄生虫,因此是嵌套的寄生虫对——足以实现强大而稳定的动态平衡,形成生命周期。这种嵌套寄生模型包括竞争和栖息地限制。其催化生命周期有效地捕获、引导和转化能量,使宿主能够动态生存和适应。我们提出了一个用于准种的马尔萨斯适合度模型,该模型通过宿主-嵌套寄生虫的生命周期进化,具有两个核心特征,即退化寄生虫的快速替换和宿主-嵌套寄生虫单位从一对到三对的进化稳定性的增加。