Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, United States of America.
Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan, Alicante, Spain.
PLoS Genet. 2023 Mar 27;19(3):e1010490. doi: 10.1371/journal.pgen.1010490. eCollection 2023 Mar.
Antimicrobial resistance (AMR) remains a major threat to global health. To date, tractable approaches that decipher how AMR emerges within a bacterial population remain limited. Here, we developed a framework that exploits genetic diversity from environmental bacterial populations to decode emergent phenotypes such as AMR. OmpU is a porin that can make up to 60% of the outer membrane of Vibrio cholerae, the cholera pathogen. This porin is directly associated with the emergence of toxigenic clades and confers resistance to numerous host antimicrobials. In this study, we examined naturally occurring allelic variants of OmpU in environmental V. cholerae and established associations that connected genotypic variation with phenotypic outcome. We covered the landscape of gene variability and found that the porin forms two major phylogenetic clusters with striking genetic diversity. We generated 14 isogenic mutant strains, each encoding a unique ompU allele, and found that divergent genotypes lead to convergent antimicrobial resistance profiles. We identified and characterized functional domains in OmpU unique to variants conferring AMR-associated phenotypes. Specifically, we identified four conserved domains that are linked with resistance to bile and host-derived antimicrobial peptides. Mutant strains for these domains exhibit differential susceptibility patterns to these and other antimicrobials. Interestingly, a mutant strain in which we exchanged the four domains of the clinical allele for those of a sensitive strain exhibits a resistance profile closer to a porin deletion mutant. Finally, using phenotypic microarrays, we uncovered novel functions of OmpU and their connection with allelic variability. Our findings highlight the suitability of our approach towards dissecting the specific protein domains associated with the emergence of AMR and can be naturally extended to other bacterial pathogens and biological processes.
抗微生物药物耐药性(AMR)仍然是全球健康的主要威胁。迄今为止,能够阐明 AMR 在细菌群体中出现的方法仍然有限。在这里,我们开发了一种利用环境细菌群体中的遗传多样性来解码新兴表型(如 AMR)的框架。OmpU 是一种孔蛋白,可构成霍乱弧菌(霍乱病原体)外膜的 60%。这种孔蛋白直接与产毒性进化枝的出现相关,并赋予对多种宿主抗菌药物的抗性。在这项研究中,我们研究了环境霍乱弧菌中 OmpU 的天然等位基因变异体,并建立了将基因型变异与表型结果联系起来的关联。我们涵盖了基因变异性的全貌,发现该孔蛋白形成两个主要的系统发育簇,具有惊人的遗传多样性。我们生成了 14 个同工突变株,每个株编码一个独特的 ompU 等位基因,发现不同的基因型导致趋同的抗菌药物耐药性特征。我们鉴定并鉴定了与 AMR 相关表型相关的 OmpU 中的功能结构域。具体来说,我们鉴定了四个独特的 OmpU 保守结构域,这些结构域与胆汁和宿主来源的抗菌肽的抗性相关。这些结构域的突变株对这些和其他抗菌药物表现出不同的敏感性模式。有趣的是,我们将临床等位基因的四个结构域与敏感株的结构域交换的突变株表现出更接近孔蛋白缺失突变株的耐药谱。最后,使用表型微阵列,我们揭示了 OmpU 的新功能及其与等位基因变异性的联系。我们的研究结果强调了我们的方法在剖析与 AMR 出现相关的特定蛋白质结构域方面的适用性,并且可以自然扩展到其他细菌病原体和生物学过程。