López-Pérez Mario, Balasubramanian Deepak, Campos-Lopez Alicia, Crist Cole, Grant Trudy-Ann, Haro-Moreno Jose M, Zaragoza-Solas Asier, Almagro-Moreno Salvador
Burnett School of Biomedical Sciences, College of Medicine, University of Central, Florida, Orlando, FL, 32827.
Microbial Genomics and Evolution Group, División de Microbiología, Universidad Miguel Hernández, Alicante 03550, Spain.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2417915122. doi: 10.1073/pnas.2417915122. Epub 2025 May 28.
The underlying factors that lead to specific strains within a species to emerge as human pathogens remain mostly enigmatic. The diarrheal disease cholera is caused by strains from a phylogenetically confined group within the species, the pandemic cholera group (PCG), making it an ideal model system to tackle this puzzling phenomenon. Comprehensive analyses of over 1,840 genomes, including environmental isolates from this study, reveal that the species consists of eleven groups, with the PCG belonging to the largest and located within a lineage shared with environmental strains. This hierarchical classification provided us with a framework to unravel the ecoevolutionary dynamics of the genetic determinants associated with the emergence of toxigenic . Our analyses indicate that this phenomenon is largely dependent on the acquisition of unique modular gene clusters and allelic variations that confer a competitive advantage during intestinal colonization. We determined that certain PCG-associated alleles are essential for successful colonization whereas others provide a nonlinear competitive advantage, acting as a critical bottleneck that clarifies the isolated emergence of PCG. For instance, toxigenic strains encoding non-PCG alleles of a) or b) a sextuple allelic exchange mutant for genes , , , , and , lose their ability to colonize the intestine. Interestingly, these alleles do not play a role in the colonization of newly established model environmental reservoirs. Our study uncovers the evolutionary roots of toxigenic offering a tractable approach for investigating the emergence of pathogenic clones within an environmental population.
导致一个物种内特定菌株成为人类病原体的潜在因素大多仍不为人知。腹泻病霍乱由该物种内一个系统发育受限群体——大流行霍乱群(PCG)的菌株引起,这使其成为解决这一令人困惑现象的理想模型系统。对超过1840个基因组的全面分析,包括本研究中的环境分离株,揭示该物种由11个群体组成,其中PCG属于最大的群体,且位于与环境菌株共有的一个谱系内。这种层次分类为我们提供了一个框架,以阐明与产毒菌株出现相关的遗传决定因素的生态进化动态。我们的分析表明,这一现象在很大程度上取决于获得独特的模块化基因簇和等位基因变异,这些变异在肠道定殖过程中赋予竞争优势。我们确定某些与PCG相关的等位基因对于成功定殖至关重要,而其他等位基因则提供非线性竞争优势,充当一个关键瓶颈,解释了PCG的孤立出现。例如,编码a)或b)基因、、、、和的六重等位基因交换突变体的非PCG等位基因的产毒菌株失去了在肠道定殖的能力。有趣的是,这些等位基因在新建立的模型环境宿主定殖中不起作用。我们的研究揭示了产毒菌株的进化根源,为研究环境群体中致病克隆的出现提供了一种易于处理的方法。