Digital Inclusion, Bioversity International, 34397 Montpellier, France.
Department of Agricultural Sciences, Inland Norway University of Applied Sciences, 2318 Hamar, Norway.
Proc Natl Acad Sci U S A. 2023 Apr 4;120(14):e2205771120. doi: 10.1073/pnas.2205771120. Epub 2023 Mar 27.
This perspective describes the opportunities and challenges of data-driven approaches for crop diversity management (genebanks and breeding) in the context of agricultural research for sustainable development in the Global South. Data-driven approaches build on larger volumes of data and flexible analyses that link different datasets across domains and disciplines. This can lead to more information-rich management of crop diversity, which can address the complex interactions between crop diversity, production environments, and socioeconomic heterogeneity and help to deliver more suitable portfolios of crop diversity to users with highly diverse demands. We describe recent efforts that illustrate the potential of data-driven approaches for crop diversity management. A continued investment in this area should fill remaining gaps and seize opportunities, including i) supporting genebanks to play a more active role in linking with farmers using data-driven approaches; ii) designing low-cost, appropriate technologies for phenotyping; iii) generating more and better gender and socioeconomic data; iv) designing information products to facilitate decision-making; and v) building more capacity in data science. Broad, well-coordinated policies and investments are needed to avoid fragmentation of such capacities and achieve coherence between domains and disciplines so that crop diversity management systems can become more effective in delivering benefits to farmers, consumers, and other users of crop diversity.
本观点描述了在农业可持续发展研究背景下,数据驱动方法在作物多样性管理(基因库和育种)方面的机遇和挑战。数据驱动方法基于更大的数据量和灵活的分析,这些分析将不同领域和学科的不同数据集联系起来。这可以实现对作物多样性的更具信息量的管理,从而解决作物多样性、生产环境和社会经济异质性之间的复杂相互作用,并帮助向具有高度多样化需求的用户提供更合适的作物多样性组合。我们描述了最近的努力,这些努力说明了数据驱动方法在作物多样性管理方面的潜力。在这一领域的持续投资应该能够弥补剩余的差距并抓住机遇,包括:(i)支持基因库利用数据驱动方法与农民更积极地联系;(ii)设计低成本、合适的表型分析技术;(iii)生成更多和更好的性别和社会经济数据;(iv)设计信息产品以促进决策;以及(v)在数据科学方面建立更多的能力。需要广泛和协调一致的政策和投资,以避免这些能力的碎片化,并实现不同领域和学科之间的一致性,使作物多样性管理系统能够更有效地为农民、消费者和其他作物多样性用户带来利益。