Department of Epidemiology-Data-Biostatistics, Delegation of Clinical Research and Innovation (DRCI), Foch Hospital, 92150, Suresnes, France.
Laboratoire des Sciences du Climat et de l'Environnement, CEA Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, IPSL, 91191, Gif-sur-Yvette, France.
Sci Rep. 2023 Mar 27;13(1):4996. doi: 10.1038/s41598-023-30014-2.
COVID-19 prediction models are characterized by uncertainties due to fluctuating parameters, such as changes in infection or recovery rates. While deterministic models often predict epidemic peaks too early, incorporating these fluctuations into the SIR model can provide a more accurate representation of peak timing. Predicting R0, the basic reproduction number, remains a major challenge with significant implications for government policy and strategy. In this study, we propose a tool for policy makers to show the effects of possible fluctuations in policy strategies on different R0 levels. Results show that epidemic peaks in the United States occur at varying dates, up to 50, 87, and 82 days from the beginning of the second, third, and fourth waves. Our findings suggest that inaccurate predictions and public health policies may result from underestimating fluctuations in infection or recovery rates. Therefore, incorporating fluctuations into SIR models should be considered when predicting epidemic peak times to inform appropriate public health responses.
COVID-19 预测模型的特点是存在不确定性,这是由于参数波动造成的,例如感染率或康复率的变化。虽然确定性模型经常过早预测疫情高峰期,但将这些波动纳入 SIR 模型可以更准确地反映高峰期的时间。预测基本再生数 R0 仍然是一个主要挑战,对政府政策和策略具有重大影响。在这项研究中,我们为政策制定者提出了一个工具,以展示政策策略可能的波动对不同 R0 水平的影响。结果表明,美国的疫情高峰期出现在不同的日期,从第二波、第三波和第四波开始分别延迟了 50、87 和 82 天。我们的研究结果表明,由于低估了感染或康复率的波动,可能导致预测不准确和公共卫生政策失误。因此,在预测疫情高峰期时,应考虑将波动纳入 SIR 模型,以便为适当的公共卫生应对措施提供信息。