文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 MRI 软骨参数预测骨关节炎进展的列线图的开发和评估:FNIH OA 生物标志物联盟的数据。

Development and evaluation of nomograms for predicting osteoarthritis progression based on MRI cartilage parameters: data from the FNIH OA biomarkers Consortium.

机构信息

Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.

Department of Orthopedics, Central Hospital of Shenyang Medical College, Shenyang, Liaoning Province, China.

出版信息

BMC Med Imaging. 2023 Mar 27;23(1):43. doi: 10.1186/s12880-023-01001-w.


DOI:10.1186/s12880-023-01001-w
PMID:36973670
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10045658/
Abstract

BACKGROUND: Osteoarthritis (OA) is a leading cause of disability worldwide. However, the existing methods for evaluating OA patients do not provide enough comprehensive information to make reliable predictions of OA progression. This retrospective study aimed to develop prediction nomograms based on MRI cartilage that can predict disease progression of OA. METHODS: A total of 600 subjects with mild-to-moderate osteoarthritis from the Foundation for National Institute of Health (FNIH) project of osteoarthritis initiative (OAI). The MRI cartilage parameters of the knee at baseline were measured, and the changes in cartilage parameters at 12- and 24-month follow-up were calculated. The least absolute shrinkage and selection operator (LASSO) regression analysis was used to extract the valuable characteristic parameters at different time points including cartilage thickness, cartilage volume, subchondral bone exposure area and uniform cartilage thickness in different sub regions of the knee, and the MRI cartilage parameters score0, scoreΔ12, and scoreΔ24 at baseline, 12 months, and 24 months were constructed. ScoreΔ12, and scoreΔ24 represent changes between 12 M vs. baseline, and 24 M vs. baseline, respectively. Logistic regression analysis was used to construct the nomogram0, nomogramΔ12, and nomogramΔ24, including MRI-based score and risk factors. The area under curve (AUC) was used to evaluate the differentiation of nomograms in disease progression and subgroup analysis. The calibration curve and Hosmer-Lemeshow (H-L) test were used to verify the calibration of the nomograms. Clinical usefulness of each prediction nomogram was verified by decision curve analysis (DCA). The nomograms with predictive efficacy were analyzed by secondary analysis. Internal verification was assessed using bootstrapping validation. RESULTS: Each nomogram included cartilage score, KL grade, WOMAC pain score, WOMAC disability score, and minimum joint space width. The AUC of nomogram0, nomogramΔ12, and nomogramΔ24 in predicing the progression of radiology and pain were 0.69, 0.64, and 0.71, respectively. All three nomograms had good calibration. Analysis by DCA showed that the clinical effectiveness of nomogramΔ24 was higher than others. Secondary analysis showed that nomogram0 and nomogramΔ24 were more capable of predicting OA radiologic progression than pain progression. CONCLUSION: Nomograms based on MRI cartilage change were useful for predicting the progression of mild to moderate OA.

摘要

背景:骨关节炎(OA)是全球导致残疾的主要原因。然而,现有的评估 OA 患者的方法并没有提供足够全面的信息来对 OA 进展做出可靠的预测。本回顾性研究旨在开发基于 MRI 软骨的预测列线图,以预测 OA 的疾病进展。

方法:共纳入来自国立卫生研究院(FNIH)骨关节炎倡议(OAI)项目的 600 例轻中度骨关节炎患者。测量基线时膝关节 MRI 软骨参数,并计算 12 个月和 24 个月随访时软骨参数的变化。采用最小绝对收缩和选择算子(LASSO)回归分析,提取不同时间点有价值的特征参数,包括软骨厚度、软骨体积、软骨下骨暴露面积和膝关节不同亚区的均匀软骨厚度,以及基线、12 个月和 24 个月的 MRI 软骨参数评分 0、评分Δ12 和评分Δ24。评分Δ12 和评分Δ24 分别代表 12 个月 vs. 基线和 24 个月 vs. 基线之间的变化。采用 logistic 回归分析构建列线图 0、列线图Δ12 和列线图Δ24,包括基于 MRI 的评分和危险因素。采用曲线下面积(AUC)评价列线图在疾病进展和亚组分析中的区分度。采用校准曲线和 Hosmer-Lemeshow(H-L)检验验证列线图的校准度。采用决策曲线分析(DCA)验证各预测列线图的临床实用性。通过二次分析对有预测效能的列线图进行分析。采用 bootstrap 验证评估内部验证。

结果:每个列线图均包括软骨评分、KL 分级、WOMAC 疼痛评分、WOMAC 残疾评分和最小关节间隙宽度。列线图 0、列线图Δ12 和列线图Δ24 预测影像学和疼痛进展的 AUC 分别为 0.69、0.64 和 0.71。三个列线图均有较好的校准度。DCA 分析显示,列线图Δ24 的临床有效性更高。二次分析显示,列线图 0 和列线图Δ24 较疼痛进展更能预测 OA 影像学进展。

结论:基于 MRI 软骨变化的列线图可用于预测轻中度 OA 的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e3/10045658/aeaac2d44d92/12880_2023_1001_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e3/10045658/5bb37225f075/12880_2023_1001_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e3/10045658/2edf3369e3c1/12880_2023_1001_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e3/10045658/c670d9e0418a/12880_2023_1001_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e3/10045658/02b3edd2619b/12880_2023_1001_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e3/10045658/aeaac2d44d92/12880_2023_1001_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e3/10045658/5bb37225f075/12880_2023_1001_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e3/10045658/2edf3369e3c1/12880_2023_1001_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e3/10045658/c670d9e0418a/12880_2023_1001_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e3/10045658/02b3edd2619b/12880_2023_1001_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e3/10045658/aeaac2d44d92/12880_2023_1001_Fig5_HTML.jpg

相似文献

[1]
Development and evaluation of nomograms for predicting osteoarthritis progression based on MRI cartilage parameters: data from the FNIH OA biomarkers Consortium.

BMC Med Imaging. 2023-3-27

[2]
Novel nomogram for predicting the progression of osteoarthritis based on 3D-MRI bone shape: data from the FNIH OA biomarkers consortium.

BMC Musculoskelet Disord. 2021-9-12

[3]
Conventional MRI-based subchondral trabecular biomarkers as predictors of knee osteoarthritis progression: data from the Osteoarthritis Initiative.

Eur Radiol. 2021-6

[4]
Tool for osteoarthritis risk prediction (TOARP) over 8 years using baseline clinical data, X-ray, and MRI: Data from the osteoarthritis initiative.

J Magn Reson Imaging. 2017-11-16

[5]
Predictive models of radiographic progression and pain progression in patients with knee osteoarthritis: data from the FNIH OA biomarkers consortium project.

Arthritis Res Ther. 2024-5-30

[6]
Conventional MRI-derived subchondral trabecular biomarkers and their association with knee cartilage volume loss as early as 1 year: a longitudinal analysis from Osteoarthritis Initiative.

Skeletal Radiol. 2022-10

[7]
Predictive and concurrent validity of cartilage thickness change as a marker of knee osteoarthritis progression: data from the Osteoarthritis Initiative.

Osteoarthritis Cartilage. 2017-8-31

[8]
Association of Superficial Cartilage Transverse Relaxation Time With Osteoarthritis Disease Progression: Data From the Foundation for the National Institutes of Health Biomarker Study of the Osteoarthritis Initiative.

Arthritis Care Res (Hoboken). 2022-11

[9]
Semiquantitative Imaging Biomarkers of Knee Osteoarthritis Progression: Data From the Foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium.

Arthritis Rheumatol. 2016-10

[10]
Hand joint space narrowing and osteophytes are associated with magnetic resonance imaging-defined knee cartilage thickness and radiographic knee osteoarthritis: data from the Osteoarthritis Initiative.

J Rheumatol. 2011-11-1

引用本文的文献

[1]
Photon-counting CT versus energy-integrating detector and flat-panel CT for cadaveric wrist arthrography with additional tin filter dose reduction.

Eur Radiol Exp. 2025-8-29

本文引用的文献

[1]
Machine learning in knee osteoarthritis: A review.

Osteoarthr Cartil Open. 2020-5-4

[2]
Prediction of knee pain improvement over two years for knee osteoarthritis using a dynamic nomogram based on MRI-derived radiomics: a proof-of-concept study.

Osteoarthritis Cartilage. 2023-2

[3]
A Simple Nomogram for Predicting Osteoarthritis Severity in Patients with Knee Osteoarthritis.

Comput Math Methods Med. 2022

[4]
A clinical model for predicting knee replacement in early-stage knee osteoarthritis: data from osteoarthritis initiative.

Clin Rheumatol. 2022-4

[5]
A deep learning method for predicting knee osteoarthritis radiographic progression from MRI.

Arthritis Res Ther. 2021-10-18

[6]
Novel nomogram for predicting the progression of osteoarthritis based on 3D-MRI bone shape: data from the FNIH OA biomarkers consortium.

BMC Musculoskelet Disord. 2021-9-12

[7]
Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies.

EClinicalMedicine. 2020-11-26

[8]
The burden of OA-health services and economics.

Osteoarthritis Cartilage. 2022-1

[9]
Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review.

JAMA. 2021-2-9

[10]
Longitudinal Change in Knee Cartilage Thickness and Function in Subjects with and without MRI-Diagnosed Cartilage Damage.

Cartilage. 2021-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索