Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.
Adv Healthc Mater. 2023 Jul;12(19):e2202619. doi: 10.1002/adhm.202202619. Epub 2023 Apr 23.
Vagus nerve stimulation (VNS) has the potential to treat various peripheral dysfunctions, but the traditional cuff electrodes for VNS are susceptible to off-target effects. Microelectrodes may enable highly selective VNS that can mitigate off-target effects, but they suffer from the increased impedance. Recent studies on microelectrodes with non-Euclidean geometries have reported higher energy efficiency in neural stimulation applications. These previous studies use electrodes with mm/cm-scale dimensions, mostly targeted for myelinated fibers. This study evaluates fractal microelectrodes for VNS in a rodent model (N = 3). A thin-film device with fractal and circle microelectrodes is fabricated to compare their neural stimulation performance on the same radial coordinate of the nerve. The results show that fractal microelectrodes can activate C-fibers with up to 52% less energy (p = 0.012) compared to circle microelectrodes. To the best of the knowledge, this work is the first to demonstrate a geometric advantage of fractal microelectrodes for VNS in vivo.
迷走神经刺激(VNS)有可能治疗各种外周功能障碍,但传统的 VNS 袖带电极容易产生脱靶效应。微电极可能实现高度选择性的 VNS,从而减轻脱靶效应,但它们的阻抗会增加。最近关于具有非欧几里得几何形状的微电极的研究报告称,在神经刺激应用中具有更高的能量效率。这些先前的研究使用具有毫米/厘米级尺寸的电极,主要针对有髓纤维。本研究在啮齿动物模型中评估了用于 VNS 的分形微电极(N=3)。制作了带有分形和圆形微电极的薄膜器件,以比较它们在神经上相同径向坐标的神经刺激性能。结果表明,与圆形微电极相比,分形微电极可以用少 52%的能量激活 C 纤维(p=0.012)。据所知,这项工作首次证明了分形微电极在体内 VNS 中的几何优势。