Suppr超能文献

一种用于人类和机器视觉的自相似堆栈模型。

A self-similar stack model for human and machine vision.

作者信息

Burton G J, Haig N D, Moorhead I R

出版信息

Biol Cybern. 1986;53(6):397-403. doi: 10.1007/BF00318205.

Abstract

A new model is proposed that not only exhibits the major properties of primate spatial vision but also has a structure that can be implemented efficiently in a machine vision system. The model is based on a self-similar stack structure with a spatial resolution that varies with eccentricity. It correctly reproduces the visual cortical mapping function, yet it has the important attribute that it can produce invariant responses to local changes in the size and position of image features. By proposing a novel purpose for cortical "bar-detectors", the model can also produce invariance to more general distortions. The structure of the model allows efficient hierarchical search to be made and it naturally embraces the concept of "attention area". Exploitation of this model has already confirmed these properties and has also revealed its robust ability to control the focus and gain of machine vision systems.

摘要

提出了一种新模型,它不仅展现了灵长类动物空间视觉的主要特性,而且具有一种能够在机器视觉系统中高效实现的结构。该模型基于一种自相似堆栈结构,其空间分辨率随离心率而变化。它能正确再现视觉皮层映射功能,并且具有重要特性,即对图像特征大小和位置的局部变化能产生不变响应。通过为皮层“条形检测器”提出一种新用途,该模型还能对更一般的失真产生不变性。该模型的结构允许进行高效的分层搜索,并且自然地包含了“关注区域”的概念。对该模型的应用已经证实了这些特性,还揭示了其控制机器视觉系统的焦点和增益的强大能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验