Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.
Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, United States.
ACS Chem Neurosci. 2023 Apr 5;14(7):1321-1330. doi: 10.1021/acschemneuro.3c00014. Epub 2023 Mar 28.
Both senile plaques formed by amyloid-β (Aβ) and neurofibrillary tangles (NFTs) comprised of tau are pathological hallmarks of Alzheimer's disease (AD). The accumulation of NFTs better correlates with the loss of cognitive function than senile plaques, but NFTs are rarely observed without the presence of senile plaques. Hence, cross-seeding of tau by preformed Aβ amyloid fibril seeds has been proposed to drive the aggregation of tau and exacerbate AD progression, but the molecular mechanism remains unknown. Here, we first identified cross-interaction hotspots between Aβ and tau using atomistic discrete molecular dynamics simulations (DMD) and confirmed the critical role of the four microtubule-binding repeats of tau (R1-R4) in the cross-interaction with Aβ. We further investigated the binding structure and dynamics of each tau repeat with a preformed Aβ fibril seed. Specifically, R1 and R3 preferred to bind the Aβ fibril lateral surface instead of the elongation end. In contrast, R2 and R4 had higher binding propensities to the fibril elongation end than the lateral surface, enhancing β-sheet content by forming hydrogen bonds with the exposed hydrogen bond donors and acceptors. Together, our results suggest that the four repeats play distinct roles in driving the binding of tau to different surfaces of an Aβ fibril seed. Binding of tau to the lateral surface of Aβ fibril can increase the local concentration, while the binding to the elongation surface promotes β-sheet formation, both of which reduce the free energy barrier for tau aggregation nucleation and subsequent fibrillization.
由β淀粉样蛋白(Aβ)形成的老年斑和由 tau 组成的神经原纤维缠结(NFTs)都是阿尔茨海默病(AD)的病理学标志。NFTs 的积累与认知功能的丧失更好地相关,而 NFTs 很少在没有老年斑的情况下观察到。因此,已经提出了由预先形成的 Aβ 淀粉样纤维种子引发 tau 的交叉播种以驱动 tau 的聚集并加剧 AD 的进展,但分子机制仍然未知。在这里,我们首先使用原子离散分子动力学模拟(DMD)鉴定了 Aβ 和 tau 之间的交叉相互作用热点,并证实了 tau 的四个微管结合重复(R1-R4)在与 Aβ 的交叉相互作用中的关键作用。我们进一步研究了每个 tau 重复与预先形成的 Aβ 纤维种子的结合结构和动力学。具体来说,R1 和 R3 更倾向于结合 Aβ 纤维的侧表面,而不是延伸端。相比之下,R2 和 R4 与纤维延伸端的结合倾向高于侧表面,通过与暴露的氢键供体和受体形成氢键来提高β-折叠含量。总之,我们的结果表明,这四个重复在驱动 tau 与 Aβ 纤维种子的不同表面结合方面发挥了不同的作用。tau 与 Aβ 纤维侧表面的结合可以增加局部浓度,而与延伸表面的结合促进β-折叠形成,这两者都降低了 tau 聚集核形成和随后的纤维化的自由能势垒。