Suppr超能文献

CT成像与放射组学分析在睾丸癌化疗后腹膜后淋巴结清扫术中的应用,以帮助年轻外科医生预判手术难点

CT Rendering and Radiomic Analysis in Post-Chemotherapy Retroperitoneal Lymph Node Dissection for Testicular Cancer to Anticipate Difficulties for Young Surgeons.

作者信息

Scavuzzo Anna, Figueroa-Rodriguez Pavel, Stefano Alessandro, Jimenez Guedulain Nallely, Muruato Araiza Sebastian, Cendejas Gomez Jose de Jesus, Quiroz Compeaán Alejandro, Victorio Vargas Dimas O, Jiménez-Ríos Miguel A

机构信息

Instituto Nacional de Cancerologia, Department of Urology, Universidad Autonoma de Mexico-UNAM, Mexico City 14080, Mexico.

Instituto Nacional de Cancerologia, Department of Biomedical Engineering, Universidad Autonoma de Mexico-UNAM, Mexico City 14080, Mexico.

出版信息

J Imaging. 2023 Mar 17;9(3):71. doi: 10.3390/jimaging9030071.

Abstract

Post-chemotherapy retroperitoneal lymph node dissection (PC-RPLND) in non-seminomatous germ-cell tumor (NSTGCTs) is a complex procedure. We evaluated whether 3D computed tomography (CT) rendering and their radiomic analysis help predict resectability by junior surgeons. The ambispective analysis was performed between 2016-2021. A prospective group (A) of 30 patients undergoing CT was segmented using the 3D Slicer software while a retrospective group (B) of 30 patients was evaluated with conventional CT (without 3D reconstruction). CatFisher's exact test showed a -value of 0.13 for group A and 1.0 for Group B. The difference between the proportion test showed a -value of 0.009149 (IC 0.1-0.63). The proportion of the correct classification showed a -value of 0.645 (IC 0.55-0.87) for A, and 0.275 (IC 0.11-0.43) for Group B. Furthermore, 13 shape features were extracted: elongation, flatness, volume, sphericity, and surface area, among others. Performing a logistic regression with the entire dataset, = 60, the results were: Accuracy: 0.7 and Precision: 0.65. Using = 30 randomly chosen, the best result obtained was Accuracy: 0.73 and Precision: 0.83, with a -value: 0.025 for Fisher's exact test. In conclusion, the results showed a significant difference in the prediction of resectability with conventional CT versus 3D reconstruction by junior surgeons versus experienced surgeons. Radiomic features used to elaborate an artificial intelligence model improve the prediction of resectability. The proposed model could be of great support in a university hospital, allowing it to plan the surgery and to anticipate complications.

摘要

非精原细胞性生殖细胞肿瘤(NSTGCTs)的化疗后腹膜后淋巴结清扫术(PC-RPLND)是一项复杂的手术。我们评估了三维计算机断层扫描(CT)成像及其放射组学分析是否有助于初级外科医生预测手术可切除性。在2016年至2021年期间进行了双向分析。前瞻性组(A组)的30例接受CT检查的患者使用3D Slicer软件进行分割,而回顾性组(B组)的30例患者采用传统CT(无三维重建)进行评估。卡方精确检验显示A组的P值为0.13,B组为1.0。比例检验的差异显示P值为0.009149(95%置信区间0.1-0.63)。正确分类的比例显示A组的P值为0.645(95%置信区间0.55-0.87),B组为0.275(95%置信区间0.11-0.43)。此外,提取了13个形状特征:伸长率、扁平度、体积、球形度和表面积等。对整个数据集(n = 60)进行逻辑回归,结果为:准确率:0.7,精确率:0.65。使用随机选择的n = 30,获得的最佳结果为准确率:0.73,精确率:0.83,费舍尔精确检验的P值为0.025。总之,结果显示初级外科医生与经验丰富的外科医生相比,传统CT与三维重建在预测手术可切除性方面存在显著差异。用于构建人工智能模型的数据特征改善了手术可切除性的预测。所提出的模型在大学医院可能会有很大帮助,使其能够规划手术并预测并发症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/416a/10056656/b72429f2ea79/jimaging-09-00071-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验