Suppr超能文献

汽车装配工业环境中的6D物体定位

6D Object Localization in Car-Assembly Industrial Environment.

作者信息

Papadaki Alexandra, Pateraki Maria

机构信息

School of Rural Surveying and Geoinformatics Engineering, National Technical University of Athens, GR-15780 Athens, Greece.

Institute of Communication and Computer Systems (ICCS), National Technical University of Athens, GR-15773 Athens, Greece.

出版信息

J Imaging. 2023 Mar 20;9(3):72. doi: 10.3390/jimaging9030072.

Abstract

In this work, a visual object detection and localization workflow integrated into a robotic platform is presented for the 6D pose estimation of objects with challenging characteristics in terms of weak texture, surface properties and symmetries. The workflow is used as part of a module for object pose estimation deployed to a mobile robotic platform that exploits the Robot Operating System (ROS) as middleware. The objects of interest aim to support robot grasping in the context of human-robot collaboration during car door assembly in industrial manufacturing environments. In addition to the special object properties, these environments are inherently characterised by cluttered background and unfavorable illumination conditions. For the purpose of this specific application, two different datasets were collected and annotated for training a learning-based method that extracts the object pose from a single frame. The first dataset was acquired in controlled laboratory conditions and the second in the actual indoor industrial environment. Different models were trained based on the individual datasets and a combination of them were further evaluated in a number of test sequences from the actual industrial environment. The qualitative and quantitative results demonstrate the potential of the presented method in relevant industrial applications.

摘要

在这项工作中,提出了一种集成到机器人平台中的视觉目标检测与定位工作流程,用于对具有弱纹理、表面特性和对称性等具有挑战性特征的物体进行6D位姿估计。该工作流程用作部署到移动机器人平台的目标位姿估计模块的一部分,该平台利用机器人操作系统(ROS)作为中间件。感兴趣的物体旨在支持工业制造环境中车门装配过程中人机协作背景下的机器人抓取。除了物体的特殊属性外,这些环境还具有杂乱背景和不利光照条件的固有特征。针对这一特定应用,收集并标注了两个不同的数据集,用于训练一种基于学习的方法,该方法从单帧中提取物体位姿。第一个数据集是在受控实验室条件下获取的,第二个数据集是在实际室内工业环境中获取的。基于各个数据集训练了不同的模型,并在来自实际工业环境的多个测试序列中对它们的组合进行了进一步评估。定性和定量结果证明了所提出方法在相关工业应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa48/10057016/f27d2795d3d3/jimaging-09-00072-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验