Suppr超能文献

多管齐下的非偏见策略指导抗 EGFR/EPHA2 双特异性抗体的开发用于联合癌症治疗。

A Multipronged Unbiased Strategy Guides the Development of an Anti-EGFR/EPHA2-Bispecific Antibody for Combination Cancer Therapy.

机构信息

Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, Saskatchewan, Canada.

Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa.

出版信息

Clin Cancer Res. 2023 Jul 14;29(14):2686-2701. doi: 10.1158/1078-0432.CCR-22-2535.

Abstract

PURPOSE

Accumulating analyses of pro-oncogenic molecular mechanisms triggered a rapid development of targeted cancer therapies. Although many of these treatments produce impressive initial responses, eventual resistance onset is practically unavoidable. One of the main approaches for preventing this refractory condition relies on the implementation of combination therapies. This includes dual-specificity reagents that affect both of their targets with a high level of selectivity. Unfortunately, selection of target combinations for these treatments is often confounded by limitations in our understanding of tumor biology. Here, we describe and validate a multipronged unbiased strategy for predicting optimal co-targets for bispecific therapeutics.

EXPERIMENTAL DESIGN

Our strategy integrates ex vivo genome-wide loss-of-function screening, BioID interactome profiling, and gene expression analysis of patient data to identify the best fit co-targets. Final validation of selected target combinations is done in tumorsphere cultures and xenograft models.

RESULTS

Integration of our experimental approaches unambiguously pointed toward EGFR and EPHA2 tyrosine kinase receptors as molecules of choice for co-targeting in multiple tumor types. Following this lead, we generated a human bispecific anti-EGFR/EPHA2 antibody that, as predicted, very effectively suppresses tumor growth compared with its prototype anti-EGFR therapeutic antibody, cetuximab.

CONCLUSIONS

Our work not only presents a new bispecific antibody with a high potential for being developed into clinically relevant biologics, but more importantly, successfully validates a novel unbiased strategy for selecting biologically optimal target combinations. This is of a significant translational relevance, as such multifaceted unbiased approaches are likely to augment the development of effective combination therapies for cancer treatment. See related commentary by Kumar, p. 2570.

摘要

目的

促癌分子机制的分析积累促使靶向癌症治疗迅速发展。尽管许多这些治疗方法产生了令人印象深刻的初始反应,但最终的耐药性几乎是不可避免的。预防这种难治状态的主要方法之一是实施联合治疗。这包括双特异性试剂,它们以高度选择性影响两个靶点。不幸的是,由于我们对肿瘤生物学的理解有限,这些治疗中目标组合的选择经常受到阻碍。在这里,我们描述并验证了一种用于预测双特异性治疗最佳共靶标的多管齐下的无偏策略。

实验设计

我们的策略整合了体外全基因组功能丧失筛选、BioID 互作组分析和患者数据的基因表达分析,以确定最佳的共靶标。选定的靶标组合的最终验证是在肿瘤球体培养物和异种移植模型中进行的。

结果

我们的实验方法的整合明确指出表皮生长因子受体 (EGFR) 和 EphA2 酪氨酸激酶受体是多种肿瘤类型中共同靶向的首选分子。在此指导下,我们生成了一种人源双特异性抗 EGFR/EphA2 抗体,正如预期的那样,与原型抗 EGFR 治疗性抗体西妥昔单抗相比,它能非常有效地抑制肿瘤生长。

结论

我们的工作不仅提出了一种具有很高开发成临床相关生物制剂潜力的新型双特异性抗体,而且更重要的是,成功验证了一种选择生物学最佳靶标组合的新型无偏策略。这具有重要的转化意义,因为这种多方面的无偏方法可能会增强癌症治疗的有效联合治疗的发展。请参阅 Kumar 的相关评论,第 2570 页。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b46/10345963/de20eb49ae94/2686fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验