Geier Sebastian, Thaicharoen Nithiwadee, Hainaut Clément, Franz Titus, Salzinger Andre, Tebben Annika, Grimshandl David, Zürn Gerhard, Weidemüller Matthias
Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany.
Research Center for Quantum Technology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang, Chiang Mai 50200, Thailand.
Science. 2021 Nov 26;374(6571):1149-1152. doi: 10.1126/science.abd9547. Epub 2021 Nov 25.
Controlling interactions is the key element for the quantum engineering of many-body systems. Using time-periodic driving, a naturally given many-body Hamiltonian of a closed quantum system can be transformed into an effective target Hamiltonian that exhibits vastly different dynamics. We demonstrate such Floquet engineering with a system of spins represented by Rydberg states in an ultracold atomic gas. By applying a sequence of spin manipulations, we change the symmetry properties of the effective Heisenberg XYZ Hamiltonian. As a consequence, the relaxation behavior of the total spin is drastically modified. The observed dynamics can be qualitatively captured by a semiclassical simulation. Engineering a wide range of Hamiltonians opens vast opportunities for implementing quantum simulation of nonequilibrium dynamics in a single experimental setting.
控制相互作用是多体系统量子工程的关键要素。通过时间周期驱动,封闭量子系统的自然给定多体哈密顿量可转变为展现出截然不同动力学的有效目标哈密顿量。我们在超冷原子气体中用由里德堡态表示的自旋系统演示了这种弗洛凯工程。通过应用一系列自旋操作,我们改变了有效海森堡XYZ哈密顿量的对称性质。结果,总自旋的弛豫行为被大幅改变。观测到的动力学可以通过半经典模拟进行定性捕捉。设计各种哈密顿量为在单一实验设置中实现非平衡动力学的量子模拟开辟了广阔机遇。