Department of Physics, University of Wisconsin-Madison, Madison, WI, USA.
Department of Physics, University of Central Florida, Orlando, FL, USA.
Nature. 2022 Apr;604(7906):457-462. doi: 10.1038/s41586-022-04603-6. Epub 2022 Apr 20.
Gate-model quantum computers promise to solve currently intractable computational problems if they can be operated at scale with long coherence times and high-fidelity logic. Neutral-atom hyperfine qubits provide inherent scalability owing to their identical characteristics, long coherence times and ability to be trapped in dense, multidimensional arrays. Combined with the strong entangling interactions provided by Rydberg states, all the necessary characteristics for quantum computation are available. Here we demonstrate several quantum algorithms on a programmable gate-model neutral-atom quantum computer in an architecture based on individual addressing of single atoms with tightly focused optical beams scanned across a two-dimensional array of qubits. Preparation of entangled Greenberger-Horne-Zeilinger (GHZ) states with up to six qubits, quantum phase estimation for a chemistry problem and the quantum approximate optimization algorithm (QAOA) for the maximum cut (MaxCut) graph problem are demonstrated. These results highlight the emergent capability of neutral-atom qubit arrays for universal, programmable quantum computation, as well as preparation of non-classical states of use for quantum-enhanced sensing.
门模型量子计算机有望解决目前难以解决的计算问题,如果它们能够在大规模、长相干时间和高保真度逻辑下运行。中性原子超精细量子比特由于其相同的特性、长相干时间和能够被困在密集的多维阵列中,提供了固有的可扩展性。结合由里德堡态提供的强纠缠相互作用,所有用于量子计算的必要特性都可用。在这里,我们在基于单个原子的可编程门模型中性原子量子计算机上演示了几个量子算法,该架构基于使用紧密聚焦的光束对单个原子进行单独寻址,然后在二维量子比特阵列上进行扫描。我们演示了多达六个量子比特的纠缠 Greenberger-Horne-Zeilinger(GHZ)态的制备、化学问题的量子相位估计以及最大切割(MaxCut)图问题的量子近似优化算法(QAOA)。这些结果突出了中性原子量子比特阵列在通用可编程量子计算方面的新兴能力,以及用于量子增强传感的非经典态的制备。