Suppr超能文献

多钒中心在氧化还原缓冲和多钒钼酸铜(II)-催化有氧氧化速率中的作用。

Role of Multiple Vanadium Centers on Redox Buffering and Rates of Polyvanadomolybdate-Cu(II)-Catalyzed Aerobic Oxidations.

机构信息

Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.

出版信息

Inorg Chem. 2023 Apr 10;62(14):5822-5830. doi: 10.1021/acs.inorgchem.3c00469. Epub 2023 Mar 28.

Abstract

A recent report established that the tetrabutylammonium (TBA) salt of hexavanadopolymolybdate TBAH[PMoVO] () serves as the redox buffer with Cu(II) as a co-catalyst for aerobic deodorization of thiols in acetonitrile. Here, we document the profound impact of vanadium atom number ( = 0-4 and 6) in TBA salts of PVMoO () on this multicomponent catalytic system. The cyclic voltammetric peaks from 0 to -2000 mV vs Fc/Fc under catalytic conditions (acetonitrile, ambient T) are assigned and clarify that the redox buffering capability of the /Cu catalytic system derives from the number of steps, the number of electrons transferred each step, and the potential ranges of each step. All are reduced by varying numbers of electrons, from 1 to 6, in different reaction conditions. Significantly, with ≤ 3 not only has much lower activity than when > 3 (for example, the turnover frequencies (TOF) of and are 8.9 and 48 s, respectively) but also, unlike the latter, cannot maintain steady reduction states when the Mo atoms in these polyoxometalate (POMs) are also reduced. Stopped-flow kinetics measurements reveal that Mo atoms in Keggin exhibit much slower electron transfer rates than V atoms. There are two kinetic arguments: (a) In acetonitrile, the first formal potential of is more positive than that of (-236 and -405 mV vs Fc/Fc); however, the initial reduction rates are 1.06 × 10 s and 0.036 s for and , respectively. (b) In aqueous sulfate buffer (pH = 2), a two-step kinetics is observed for and , where the first and second steps are assigned to reduction of the V and Mo centers, respectively. Since fast and reversible electron transfers are key for the redox buffering behavior, the slower electron transfer kinetics of Mo preclude these centers functioning in redox buffering that maintains the solution potential. We conclude that with more vanadium atoms allows the POM to undergo more and faster redox changes, which enables the POM to function as a redox buffer dictating far higher catalytic activity.

摘要

最近的一份报告表明,六钒多钼杂多酸四丁基铵盐 TBAH[PMoVO]()可用作氧化还原缓冲剂,Cu(II) 作为共催化剂,用于在乙腈中实现硫醇的有氧脱臭。在这里,我们记录了钒原子数(=0-4 和 6)在 TBA 盐 PVMoO()中对这种多组分催化体系的深远影响。在催化条件下(乙腈,环境温度),从 0 到-2000 mV vs Fc/Fc 的循环伏安峰被分配,并阐明了/Cu 催化体系的氧化还原缓冲能力来自于步骤数、每个步骤转移的电子数以及每个步骤的电位范围。所有的都通过在不同的反应条件下以不同的电子数(从 1 到 6)被还原。值得注意的是,当 ≤ 3 时,不仅活性远低于 > 3 时的活性(例如,和 的周转频率(TOF)分别为 8.9 和 48 s),而且与后者不同的是,当这些多金属氧酸盐(POM)中的 Mo 原子也被还原时,它们不能保持稳定的还原状态。停流动力学测量表明,Keggin 中的 Mo 原子的电子转移速率比 V 原子慢得多。有两个动力学论点:(a)在乙腈中,的第一个形式电势比 的更正(-236 和-405 mV vs Fc/Fc);然而,初始还原速率分别为 1.06×10 s 和 0.036 s。(b)在硫酸缓冲液(pH=2)中,观察到和的两步动力学,其中第一步和第二步分别分配给 V 和 Mo 中心的还原。由于快速和可逆的电子转移是氧化还原缓冲行为的关键,Mo 的电子转移动力学较慢排除了这些中心在维持溶液电势的氧化还原缓冲中的作用。我们得出结论,具有更多钒原子的允许 POM 经历更多和更快的氧化还原变化,这使 POM 能够作为氧化还原缓冲剂,从而表现出更高的催化活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ce/10091476/aa36227e74ed/ic3c00469_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验