Suppr超能文献

抑制相分离的三结钙钛矿太阳能电池。

Suppressed phase segregation for triple-junction perovskite solar cells.

机构信息

Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.

Department of Chemistry, Northwestern University, Evanston, IL, USA.

出版信息

Nature. 2023 Jun;618(7963):74-79. doi: 10.1038/s41586-023-06006-7. Epub 2023 Mar 28.

Abstract

The tunable bandgaps and facile fabrication of perovskites make them attractive for multi-junction photovoltaics. However, light-induced phase segregation limits their efficiency and stability: this occurs in wide-bandgap (>1.65 electron volts) iodide/bromide mixed perovskite absorbers, and becomes even more acute in the top cells of triple-junction solar photovoltaics that require a fully 2.0-electron-volt bandgap absorber. Here we report that lattice distortion in iodide/bromide mixed perovskites is correlated with the suppression of phase segregation, generating an increased ion-migration energy barrier arising from the decreased average interatomic distance between the A-site cation and iodide. Using an approximately 2.0-electron-volt rubidium/caesium mixed-cation inorganic perovskite with large lattice distortion in the top subcell, we fabricated all-perovskite triple-junction solar cells and achieved an efficiency of 24.3 per cent (23.3 per cent certified quasi-steady-state efficiency) with an open-circuit voltage of 3.21 volts. This is, to our knowledge, the first reported certified efficiency for perovskite-based triple-junction solar cells. The triple-junction devices retain 80 per cent of their initial efficiency following 420 hours of operation at the maximum power point.

摘要

钙钛矿可调谐带隙和易于制造的特点使其成为多结光伏的理想选择。然而,光致相分离限制了它们的效率和稳定性:这种情况发生在宽带隙(>1.65 电子伏特)的碘/溴混合钙钛矿吸收体中,在需要完全 2.0 电子伏特带隙吸收体的三结太阳能光伏的顶电池中更为严重。在这里,我们报告说,碘/溴混合钙钛矿中的晶格畸变与相分离的抑制有关,这导致了离子迁移能垒的增加,原因是 A 位阳离子和碘化物之间的平均原子间距离减小。我们使用了一种具有较大晶格畸变的约 2.0 电子伏特铷/铯混合阳离子无机钙钛矿作为顶子电池,制造了全钙钛矿三结太阳能电池,并实现了 24.3%的效率(23.3%的认证准稳态效率),开路电压为 3.21 伏特。据我们所知,这是第一个报告的基于钙钛矿的三结太阳能电池的认证效率。在最大功率点运行 420 小时后,三结器件仍保留其初始效率的 80%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验