Salk Institute for Biological Studies, La Jolla, California 92037.
Neuroscience Graduate Program, University of California, San Diego, La Jolla, California 92093.
J Neurosci. 2023 May 10;43(19):3394-3420. doi: 10.1523/JNEUROSCI.1734-22.2023. Epub 2023 Mar 28.
Neuropeptides influence animal behaviors through complex molecular and cellular mechanisms, the physiological and behavioral effects of which are difficult to predict solely from synaptic connectivity. Many neuropeptides can activate multiple receptors, whose ligand affinity and downstream signaling cascades are often different from one another. Although we know that the diverse pharmacological characteristics of neuropeptide receptors form the basis of unique neuromodulatory effects on distinct downstream cells, it remains unclear exactly how different receptors shape the downstream activity patterns triggered by a single neuronal neuropeptide source. Here, we uncovered two separate downstream targets that are differentially modulated by tachykinin, an aggression-promoting neuropeptide in Tachykinin from a single male-specific neuronal type recruits two separate downstream groups of neurons. One downstream group, synaptically connected to the tachykinergic neurons, expresses the receptor and is necessary for aggression. Here, tachykinin supports cholinergic excitatory synaptic transmission between the tachykinergic and downstream neurons. The other downstream group expresses the receptor and is recruited primarily when tachykinin is overexpressed in the source neurons. Differential activity patterns in the two groups of downstream neurons correlate with levels of male aggression triggered by the tachykininergic neurons. These findings highlight how the amount of neuropeptide released from a small number of neurons can reshape the activity patterns of multiple downstream neuronal populations. Our results lay the foundation for further investigations into the neurophysiological mechanism by which a neuropeptide controls complex behaviors. Neuropeptides control a variety of innate behaviors, including social behaviors, in both animals and humans. Unlike fast-acting neurotransmitters, neuropeptides can elicit distinct physiological responses in different downstream neurons. How such diverse physiological effects coordinate complex social interactions remains unknown. This study uncovers the first example of a neuropeptisde from a single neuronal source eliciting distinct physiological responses in multiple downstream neurons that express different neuropeptide receptors. Understanding the unique motif of neuropeptidergic modulation, which may not be easily predicted from a synaptic connectivity map, can help elucidate how neuropeptides orchestrate complex behaviors by modulating multiple target neurons simultaneously.
神经肽通过复杂的分子和细胞机制影响动物行为,其生理和行为效应仅从突触连接很难预测。许多神经肽可以激活多种受体,其配体亲和力和下游信号级联往往彼此不同。虽然我们知道神经肽受体的多种药理学特性构成了对不同下游细胞独特神经调制效应的基础,但确切地说,不同的受体如何塑造由单个神经元神经肽源引发的下游活动模式仍不清楚。在这里,我们发现了两种不同的下游靶点,它们被促肾上腺皮质素释放因子(一种促进攻击的神经肽)以不同的方式调节。从单个雄性特异性神经元类型释放的促肾上腺皮质素释放因子招募了两个不同的下游神经元群体。一个下游群体与促肾上腺皮质素能神经元突触相连,表达受体,并对攻击行为是必需的。在这里,促肾上腺皮质素释放因子支持促肾上腺皮质素能神经元和下游神经元之间的胆碱能兴奋性突触传递。另一个下游群体表达受体,主要在源神经元中过度表达促肾上腺皮质素释放因子时被招募。两个下游神经元群体的不同活动模式与促肾上腺皮质素能神经元引发的雄性攻击水平相关。这些发现强调了从少量神经元释放的神经肽数量如何重塑多个下游神经元群体的活动模式。我们的研究结果为进一步研究神经肽控制复杂行为的神经生理学机制奠定了基础。神经肽控制着包括社交行为在内的各种本能行为,在动物和人类中都是如此。与快速作用的神经递质不同,神经肽可以在不同的下游神经元中引起不同的生理反应。这种多样化的生理效应如何协调复杂的社交互动仍然未知。本研究首次发现,来自单个神经元源的一种神经肽可以在表达不同神经肽受体的多个下游神经元中引发不同的生理反应。了解神经肽调制的独特模式,这种模式可能不容易从突触连接图中预测,有助于阐明神经肽如何通过同时调节多个靶神经元来协调复杂行为。