Suppr超能文献

从随机对照试验中估计个体化治疗效果:比较基于风险的方法的模拟研究。

Estimating individualized treatment effects from randomized controlled trials: a simulation study to compare risk-based approaches.

机构信息

Department of Medical Informatics, Erasmus Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.

Predictive Analytics and Comparative Effectiveness Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA.

出版信息

BMC Med Res Methodol. 2023 Mar 28;23(1):74. doi: 10.1186/s12874-023-01889-6.

Abstract

BACKGROUND

Baseline outcome risk can be an important determinant of absolute treatment benefit and has been used in guidelines for "personalizing" medical decisions. We compared easily applicable risk-based methods for optimal prediction of individualized treatment effects.

METHODS

We simulated RCT data using diverse assumptions for the average treatment effect, a baseline prognostic index of risk, the shape of its interaction with treatment (none, linear, quadratic or non-monotonic), and the magnitude of treatment-related harms (none or constant independent of the prognostic index). We predicted absolute benefit using: models with a constant relative treatment effect; stratification in quarters of the prognostic index; models including a linear interaction of treatment with the prognostic index; models including an interaction of treatment with a restricted cubic spline transformation of the prognostic index; an adaptive approach using Akaike's Information Criterion. We evaluated predictive performance using root mean squared error and measures of discrimination and calibration for benefit.

RESULTS

The linear-interaction model displayed optimal or close-to-optimal performance across many simulation scenarios with moderate sample size (N = 4,250; ~ 785 events). The restricted cubic splines model was optimal for strong non-linear deviations from a constant treatment effect, particularly when sample size was larger (N = 17,000). The adaptive approach also required larger sample sizes. These findings were illustrated in the GUSTO-I trial.

CONCLUSIONS

An interaction between baseline risk and treatment assignment should be considered to improve treatment effect predictions.

摘要

背景

基线结局风险可以是绝对治疗获益的重要决定因素,并且已被用于指导“个体化”医疗决策。我们比较了几种易于应用的基于风险的方法,以优化预测个体化治疗效果。

方法

我们使用不同的平均治疗效果、基线预后风险指数、其与治疗的相互作用的形状(无、线性、二次或非单调)以及治疗相关危害的大小(无或与预后指数无关的常数)的假设来模拟 RCT 数据。我们使用以下方法预测绝对获益:具有恒定相对治疗效果的模型;按照预后指数的四分之一进行分层;包含治疗与预后指数线性相互作用的模型;包含治疗与预后指数受限立方样条变换的交互作用的模型;使用赤池信息量准则的自适应方法。我们使用均方根误差以及获益的判别和校准度量来评估预测性能。

结果

在线性相互作用模型中,在具有中等样本量(N=4250;~785 个事件)的许多模拟场景中,该模型表现出最优或接近最优的性能。对于与恒定治疗效果存在强非线性偏差的情况,受限立方样条模型是最优的,尤其是在样本量更大时(N=17000)。自适应方法也需要更大的样本量。这些发现通过 GUSTO-I 试验得到了说明。

结论

应该考虑基线风险与治疗分配之间的相互作用,以提高治疗效果预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8b3/10045909/4fe668e01f7c/12874_2023_1889_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验