Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Sci Rep. 2021 Mar 4;11(1):5261. doi: 10.1038/s41598-021-84637-4.
The fast and untraceable virus mutations take lives of thousands of people before the immune system can produce the inhibitory antibody. The recent outbreak of COVID-19 infected and killed thousands of people in the world. Rapid methods in finding peptides or antibody sequences that can inhibit the viral epitopes of SARS-CoV-2 will save the life of thousands. To predict neutralizing antibodies for SARS-CoV-2 in a high-throughput manner, in this paper, we use different machine learning (ML) model to predict the possible inhibitory synthetic antibodies for SARS-CoV-2. We collected 1933 virus-antibody sequences and their clinical patient neutralization response and trained an ML model to predict the antibody response. Using graph featurization with variety of ML methods, like XGBoost, Random Forest, Multilayered Perceptron, Support Vector Machine and Logistic Regression, we screened thousands of hypothetical antibody sequences and found nine stable antibodies that potentially inhibit SARS-CoV-2. We combined bioinformatics, structural biology, and Molecular Dynamics (MD) simulations to verify the stability of the candidate antibodies that can inhibit SARS-CoV-2.
快速且难以追踪的病毒突变会在免疫系统产生抑制抗体之前夺走数千人的生命。最近爆发的 COVID-19 在全球范围内感染并杀死了数千人。快速找到可以抑制 SARS-CoV-2 病毒表位的肽或抗体序列将拯救数千人的生命。为了高通量预测针对 SARS-CoV-2 的中和抗体,在本文中,我们使用不同的机器学习 (ML) 模型来预测针对 SARS-CoV-2 的可能的抑制性合成抗体。我们收集了 1933 个病毒-抗体序列及其临床患者中和反应,并训练了一个 ML 模型来预测抗体反应。我们使用图特征化和多种 ML 方法(如 XGBoost、随机森林、多层感知机、支持向量机和逻辑回归)筛选了数千个假设的抗体序列,并发现了九个可能抑制 SARS-CoV-2 的稳定抗体。我们结合生物信息学、结构生物学和分子动力学 (MD) 模拟来验证候选抗体抑制 SARS-CoV-2 的稳定性。