Suppr超能文献

深度学习辅助的外容积去除用于高加速实时动态磁共振成像

Deep Learning Assisted Outer Volume Removal for Highly-Accelerated Real-Time Dynamic MRI.

作者信息

Gülle Merve, Weingärtner Sebastian, Akçakaya Mehmet

机构信息

Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States.

Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States.

出版信息

ArXiv. 2025 May 1:arXiv:2505.00643v1.

Abstract

Real-time (RT) dynamic MRI plays a vital role in capturing rapid physiological processes, offering unique insights into organ motion and function. Among these applications, RT cine MRI is particularly important for functional assessment of the heart with high temporal resolution. RT imaging enables free-breathing, ungated imaging of cardiac motion, making it a crucial alternative for patients who cannot tolerate conventional breath-hold, ECG-gated acquisitions. However, achieving high acceleration rates in RT cine MRI is challenging due to aliasing artifacts from extra-cardiac tissues, particularly at high undersampling factors. In this study, we propose a novel outer volume removal (OVR) method to address this challenge by eliminating aliasing contributions from non-cardiac regions in a post-processing framework. Our approach estimates the outer volume signal for each timeframe using composite temporal images from time-interleaved undersampling patterns, which inherently contain pseudo-periodic ghosting artifacts. A deep learning (DL) model is trained to identify and remove these artifacts, producing a clean outer volume estimate that is subsequently subtracted from the corresponding k-space data. The final reconstruction is performed with a physics-driven DL (PD-DL) method trained using an OVR-specific loss function to restore high spatio-temporal resolution images. Experimental results show that the proposed method at high accelerations achieves image quality that is visually comparable to clinical baseline images, while outperforming conventional reconstruction techniques, both qualitatively and quantitatively. The proposed approach provides a practical and effective solution for artifact reduction in RT cine MRI without requiring acquisition modifications, offering a pathway to higher acceleration rates while preserving diagnostic quality.

摘要

实时(RT)动态磁共振成像在捕捉快速生理过程中发挥着至关重要的作用,能为器官运动和功能提供独特见解。在这些应用中,RT电影磁共振成像对于具有高时间分辨率的心脏功能评估尤为重要。RT成像能够实现心脏运动的自由呼吸、非门控成像,使其成为无法耐受传统屏气、心电图门控采集的患者的关键替代方法。然而,由于心外组织的混叠伪影,在RT电影磁共振成像中实现高加速率具有挑战性,尤其是在高欠采样因子的情况下。在本研究中,我们提出了一种新颖的外容积去除(OVR)方法,通过在后处理框架中消除非心脏区域的混叠贡献来应对这一挑战。我们的方法使用来自时间交错欠采样模式的复合时间图像估计每个时间帧的外容积信号,这些图像固有地包含伪周期性重影伪影。训练一个深度学习(DL)模型来识别和去除这些伪影,生成一个干净的外容积估计值,随后从相应的k空间数据中减去。最终重建使用基于物理驱动的DL(PD-DL)方法进行,该方法使用特定于OVR的损失函数进行训练,以恢复高时空分辨率图像。实验结果表明,所提出的方法在高加速率下实现的图像质量在视觉上与临床基线图像相当,同时在定性和定量方面均优于传统重建技术。所提出的方法为RT电影磁共振成像中的伪影减少提供了一种实用有效的解决方案,无需修改采集过程,为在保持诊断质量的同时实现更高的加速率提供了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a19/12060988/eb738a5bcece/nihpp-2505.00643v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验