Suppr超能文献

FlowRAU-Net:基于深度二维残差注意力网络的主动脉瓣血流加速 4D Flow MRI

FlowRAU-Net: Accelerated 4D Flow MRI of Aortic Valvular Flows With a Deep 2D Residual Attention Network.

出版信息

IEEE Trans Biomed Eng. 2022 Dec;69(12):3812-3824. doi: 10.1109/TBME.2022.3180691. Epub 2022 Nov 23.

Abstract

In this work, we propose a novel deep learning reconstruction framework for rapid and accurate reconstruction of 4D flow MRI data. Reconstruction is performed on a slice-by-slice basis by reducing artifacts in zero-filled reconstructed complex images obtained from undersampled k-space. A deep residual attention network FlowRAU-Net is proposed, trained separately for each encoding direction with 2D complex image slices extracted from complex 4D images at each temporal frame and slice position. The network was trained and tested on 4D flow MRI data of aortic valvular flow in 18 human subjects. Performance of the reconstructions was measured in terms of image quality, 3-D velocity vector accuracy, and accuracy in hemodynamic parameters. Reconstruction performance was measured for three different k-space undersamplings and compared with one state of the art compressed sensing reconstruction method and three deep learning-based reconstruction methods. The proposed method outperforms state of the art methods in all performance measures for all three different k-space undersamplings. Hemodynamic parameters such as blood flow rate and peak velocity from the proposed technique show good agreement with reference flow parameters. Visualization of the reconstructed image and velocity magnitude also shows excellent agreement with the fully sampled reference dataset. Moreover, the proposed method is computationally fast. Total 4D flow data (including all slices in space and time) for a subject can be reconstructed in 69 seconds on a single GPU. Although the proposed method has been applied to 4D flow MRI of aortic valvular flows, given a sufficient number of training samples, it should be applicable to other arterial flows.

摘要

在这项工作中,我们提出了一种新颖的深度学习重建框架,用于快速准确地重建 4D 流 MRI 数据。通过减少欠采样 k 空间中重建的零填充复数图像中的伪影,逐片进行重建。提出了一种深度残差注意网络 FlowRAU-Net,它分别针对每个编码方向进行训练,从每个时间帧和切片位置的复杂 4D 图像中提取 2D 复数图像切片。该网络在 18 名人类受试者的主动脉瓣流 4D 流 MRI 数据上进行了训练和测试。重建性能通过图像质量、3D 速度矢量准确性和血液动力学参数准确性来衡量。对三种不同的 k 空间欠采样进行了重建性能测量,并与一种最先进的压缩感知重建方法和三种基于深度学习的重建方法进行了比较。在所提出的方法中,对于所有三种不同的 k 空间欠采样,该方法在所有性能指标上均优于最先进的方法。来自所提出技术的血流率和峰值速度等血液动力学参数与参考流量参数具有良好的一致性。重建图像和速度幅度的可视化也与完全采样的参考数据集非常吻合。此外,所提出的方法计算速度快。单个 GPU 上可以在 69 秒内重建单个受试者的全部 4D 流数据(包括空间和时间的所有切片)。尽管该方法已应用于主动脉瓣流的 4D 流 MRI,但只要有足够数量的训练样本,它应该适用于其他动脉流。

相似文献

本文引用的文献

8
k -Space Deep Learning for Accelerated MRI.k-空间深度学习加速磁共振成像。
IEEE Trans Med Imaging. 2020 Feb;39(2):377-386. doi: 10.1109/TMI.2019.2927101. Epub 2019 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验