Llanos-González Emilio, Sancho-Bielsa Francisco J, Frontiñán-Rubio Javier, Rabanal-Ruíz Yoana, García-Carpintero Sonia, Chicano Eduardo, Úbeda-Banon Isabel, Flores-Cuadrado Alicia, Giménez-Llort Lydia, Alcaín Francisco Javier, Peinado Juan Ramón, Durán-Prado Mario
Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Regional Centre for Biomedical Research, University of Castilla-La Mancha, 13001 Ciudad Real, Spain.
Antioxidants (Basel). 2023 Mar 19;12(3):747. doi: 10.3390/antiox12030747.
Despite its robust proteopathic nature, the spatiotemporal signature of disrupted protein modules in sporadic Alzheimer's disease (AD) brains remains poorly understood. This considered oxidative stress contributes to AD progression and early intervention with coenzyme Q10 or its reduced form, ubiquinol, delays the progression of the disease. Using MALDI-MSI and functional bioinformatic analysis, we have developed a protocol to express how deregulated protein modules arise from hippocampus and cortex in the AD mice model 3xTG-AD in an age-dependent manner. This strategy allowed us to identify which modules can be efficiently restored to a non-pathological condition by early intervention with ubiquinol. Indeed, an early deregulation of proteostasis-related protein modules, oxidative stress and metabolism has been observed in the hippocampus of 6-month mice (early AD) and the mirrored in cortical regions of 12-month mice (middle/late AD). This observation has been validated by IHC using mouse and human brain sections, suggesting that these protein modules are also affected in humans. The emergence of disrupted protein modules with AD signature can be prevented by early dietary intervention with ubiquinol in the 3xTG-AD mice model.
尽管散发性阿尔茨海默病(AD)大脑中蛋白质模块紊乱具有强大的蛋白病性质,但其时空特征仍知之甚少。氧化应激被认为会促进AD的进展,而用辅酶Q10或其还原形式泛醇进行早期干预可延缓疾病进展。通过基质辅助激光解吸/电离质谱成像(MALDI-MSI)和功能生物信息学分析,我们开发了一种方案,以表达在AD小鼠模型3xTG-AD中,失调的蛋白质模块如何以年龄依赖性方式从海马体和皮质中产生。该策略使我们能够确定哪些模块可以通过泛醇早期干预有效地恢复到非病理状态。事实上,在6个月大的小鼠(早期AD)海马体中观察到蛋白质稳态相关蛋白质模块、氧化应激和代谢的早期失调,在12个月大的小鼠(中/晚期AD)皮质区域也有类似情况。使用小鼠和人类脑切片进行的免疫组织化学(IHC)验证了这一观察结果,表明这些蛋白质模块在人类中也受到影响。在3xTG-AD小鼠模型中,通过泛醇早期饮食干预可以预防具有AD特征的蛋白质模块紊乱的出现。