Grešová Katarína, Vaculík Ondřej, Alexiou Panagiotis
Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic.
Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00 Brno, Czech Republic.
Biology (Basel). 2023 Feb 26;12(3):369. doi: 10.3390/biology12030369.
MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in the post-transcriptional regulation of biological processes. miRNAs regulate transcripts through direct binding involving the Argonaute protein family. The exact rules of binding are not known, and several in silico miRNA target prediction methods have been developed to date. Deep learning has recently revolutionized miRNA target prediction. However, the higher predictive power comes with a decreased ability to interpret increasingly complex models. Here, we present a novel interpretation technique, called attribution sequence alignment, for miRNA target site prediction models that can interpret such deep learning models on a two-dimensional representation of miRNA and putative target sequence. Our method produces a human readable visual representation of miRNA:target interactions and can be used as a proxy for the further interpretation of biological concepts learned by the neural network. We demonstrate applications of this method in the clustering of experimental data into binding classes, as well as using the method to narrow down predicted miRNA binding sites on long transcript sequences. Importantly, the presented method works with any neural network model trained on a two-dimensional representation of interactions and can be easily extended to further domains such as protein-protein interactions.
微小RNA(miRNA)是一类小的非编码RNA,在生物过程的转录后调控中发挥核心作用。miRNA通过与AGO蛋白家族的直接结合来调控转录本。具体的结合规则尚不清楚,目前已经开发了几种基于计算机的miRNA靶标预测方法。深度学习最近彻底改变了miRNA靶标预测。然而,预测能力的提高伴随着解释日益复杂模型的能力下降。在这里,我们提出了一种新的解释技术,称为归因序列比对,用于miRNA靶位点预测模型,该模型可以在miRNA和假定靶序列的二维表示上解释此类深度学习模型。我们的方法产生了一种人类可读的miRNA:靶标相互作用的可视化表示,并且可以用作进一步解释神经网络学习到的生物学概念的代理。我们展示了该方法在将实验数据聚类为结合类别方面的应用,以及使用该方法缩小长转录本序列上预测的miRNA结合位点。重要的是,所提出的方法适用于任何基于相互作用的二维表示训练的神经网络模型,并且可以很容易地扩展到蛋白质-蛋白质相互作用等其他领域。