Suppr超能文献

人工智能在费城染色体阴性骨髓增殖性肿瘤中的应用

Applications of Artificial Intelligence in Philadelphia-Negative Myeloproliferative Neoplasms.

作者信息

Elsayed Basel, Elshoeibi Amgad M, Elhadary Mohamed, Ferih Khaled, Elsabagh Ahmed Adel, Rahhal Alaa, Abu-Tineh Mohammad, Afana Mohammad S, Abdulgayoom Mohammed, Yassin Mohamed

机构信息

College of Medicine, QU Health, Qatar University, Doha 2713, Qatar.

Pharmacy Department, Heart Hospital, Hamad Medical Corporation (HMC), Doha 3050, Qatar.

出版信息

Diagnostics (Basel). 2023 Mar 16;13(6):1123. doi: 10.3390/diagnostics13061123.

Abstract

Philadelphia-negative (Ph-) myeloproliferative neoplasms (MPNs) are a group of hematopoietic malignancies identified by clonal proliferation of blood cell lineages and encompasses polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The clinical and laboratory features of Philadelphia-negative MPNs are similar, making them difficult to diagnose, especially in the preliminary stages. Because treatment goals and progression risk differ amongst MPNs, accurate classification and prognostication are critical for optimal management. Artificial intelligence (AI) and machine learning (ML) algorithms provide a plethora of possible tools to clinicians in general, and particularly in the field of malignant hematology, to better improve diagnosis, prognosis, therapy planning, and fundamental knowledge. In this review, we summarize the literature discussing the application of AI and ML algorithms in patients with diagnosed or suspected Philadelphia-negative MPNs. A literature search was conducted on PubMed/MEDLINE, Embase, Scopus, and Web of Science databases and yielded 125 studies, out of which 17 studies were included after screening. The included studies demonstrated the potential for the practical use of ML and AI in the diagnosis, prognosis, and genomic landscaping of patients with Philadelphia-negative MPNs.

摘要

费城染色体阴性(Ph-)骨髓增殖性肿瘤(MPN)是一组由血细胞谱系克隆性增殖所确定的造血系统恶性肿瘤,包括真性红细胞增多症(PV)、原发性血小板增多症(ET)和原发性骨髓纤维化(PMF)。费城染色体阴性MPN的临床和实验室特征相似,这使得它们难以诊断,尤其是在疾病初期。由于不同MPN之间的治疗目标和进展风险不同,准确分类和预后评估对于优化管理至关重要。人工智能(AI)和机器学习(ML)算法为临床医生,尤其是恶性血液学领域的医生,提供了大量可能的工具,以更好地改善诊断、预后、治疗规划和基础知识。在本综述中,我们总结了讨论AI和ML算法在已确诊或疑似费城染色体阴性MPN患者中应用的文献。我们在PubMed/MEDLINE、Embase、Scopus和Web of Science数据库中进行了文献检索,共获得125项研究,经筛选后纳入17项研究。纳入的研究证明了ML和AI在费城染色体阴性MPN患者的诊断、预后和基因组分析方面具有实际应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39c1/10047906/d7b9f942e383/diagnostics-13-01123-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验