Suppr超能文献

基于MRI的影像组学模型在前列腺癌风险分层中的应用:当代文献的批判性综述

The Use of MRI-Derived Radiomic Models in Prostate Cancer Risk Stratification: A Critical Review of Contemporary Literature.

作者信息

Huynh Linda My, Hwang Yeagyeong, Taylor Olivia, Baine Michael J

机构信息

Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 987521 Nebraska Medical Center, Omaha, NE 68198-7521, USA.

Department of Urology, University of California, Orange, CA 92868, USA.

出版信息

Diagnostics (Basel). 2023 Mar 16;13(6):1128. doi: 10.3390/diagnostics13061128.

Abstract

The development of precise medical imaging has facilitated the establishment of radiomics, a computer-based method of quantitatively analyzing subvisual imaging characteristics. The present review summarizes the current literature on the use of diagnostic magnetic resonance imaging (MRI)-derived radiomics in prostate cancer (PCa) risk stratification. A stepwise literature search of publications from 2017 to 2022 was performed. Of 218 articles on MRI-derived prostate radiomics, 33 (15.1%) generated models for PCa risk stratification. Prediction of Gleason score (GS), adverse pathology, postsurgical recurrence, and postradiation failure were the primary endpoints in 15 (45.5%), 11 (33.3%), 4 (12.1%), and 3 (9.1%) studies. In predicting GS and adverse pathology, radiomic models differentiated well, with receiver operator characteristic area under the curve (ROC-AUC) values of 0.50-0.92 and 0.60-0.92, respectively. For studies predicting post-treatment recurrence or failure, ROC-AUC for radiomic models ranged from 0.73 to 0.99 in postsurgical and radiation cohorts. Finally, of the 33 studies, 7 (21.2%) included external validation. Overall, most investigations showed good to excellent prediction of GS and adverse pathology with MRI-derived radiomic features. Direct prediction of treatment outcomes, however, is an ongoing investigation. As these studies mature and reach potential for clinical integration, concerted effort to validate these radiomic models must be undertaken.

摘要

精确医学成像的发展推动了放射组学的建立,这是一种基于计算机的定量分析亚视觉成像特征的方法。本综述总结了目前关于使用诊断性磁共振成像(MRI)衍生的放射组学进行前列腺癌(PCa)风险分层的文献。对2017年至2022年的出版物进行了逐步文献检索。在218篇关于MRI衍生的前列腺放射组学的文章中,33篇(15.1%)生成了PCa风险分层模型。预测 Gleason评分(GS)、不良病理、术后复发和放疗后失败是15项(45.5%)、11项(33.3%)、4项(12.1%)和3项(9.1%)研究的主要终点。在预测GS和不良病理方面,放射组学模型区分良好,曲线下面积(ROC-AUC)值分别为0.50-0.92和0.60-0.92。对于预测治疗后复发或失败的研究,放射组学模型在手术和放疗队列中的ROC-AUC范围为0.73至0.99。最后,在33项研究中,7项(21.2%)包括外部验证。总体而言,大多数研究表明,MRI衍生的放射组学特征对GS和不良病理的预测良好至优异。然而,对治疗结果的直接预测仍在进行研究。随着这些研究的成熟并达到临床整合的潜力,必须共同努力验证这些放射组学模型。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验