Suppr超能文献

多模态肿瘤成像的机器学习揭示了对精准治疗的反应轨迹。

Machine Learning of Multi-Modal Tumor Imaging Reveals Trajectories of Response to Precision Treatment.

作者信息

Mansouri Nesrin, Balvay Daniel, Zenteno Omar, Facchin Caterina, Yoganathan Thulaciga, Viel Thomas, Herraiz Joaquin Lopez, Tavitian Bertrand, Pérez-Liva Mailyn

机构信息

INSERM, PARCC, Université Paris Cité, F-75015 Paris, France.

Cancer Drug Research Laboratory, Department of Medicine, Division of Medical Oncology, The Research Institute of the McGill University Health Center (RI-MUHC), Montréal, QC H4A 3J1, Canada.

出版信息

Cancers (Basel). 2023 Mar 14;15(6):1751. doi: 10.3390/cancers15061751.

Abstract

The standard assessment of response to cancer treatments is based on gross tumor characteristics, such as tumor size or glycolysis, which provide very indirect information about the effect of precision treatments on the pharmacological targets of tumors. Several advanced imaging modalities allow for the visualization of targeted tumor hallmarks. Descriptors extracted from these images can help establishing new classifications of precision treatment response. We propose a machine learning (ML) framework to analyze metabolic-anatomical-vascular imaging features from positron emission tomography, ultrafast Doppler, and computed tomography in a mouse model of paraganglioma undergoing anti-angiogenic treatment with sunitinib. Imaging features from the follow-up of sunitinib-treated ( = 8, imaged once-per-week/6-weeks) and sham-treated ( = 8, imaged once-per-week/3-weeks) mice groups were dimensionally reduced and analyzed with hierarchical clustering Analysis (HCA). The classes extracted from HCA were used with 10 ML classifiers to find a generalized tumor stage prediction model, which was validated with an independent dataset of sunitinib-treated mice. HCA provided three stages of treatment response that were validated using the best-performing ML classifier. The Gaussian naive Bayes classifier showed the best performance, with a training accuracy of 98.7 and an average area under curve of 100. Our results show that metabolic-anatomical-vascular markers allow defining treatment response trajectories that reflect the efficacy of an anti-angiogenic drug on the tumor target hallmark.

摘要

对癌症治疗反应的标准评估基于肿瘤的大体特征,如肿瘤大小或糖酵解,这些特征提供了关于精准治疗对肿瘤药理学靶点影响的非常间接的信息。几种先进的成像方式能够实现对靶向肿瘤特征的可视化。从这些图像中提取的描述符有助于建立精准治疗反应的新分类。我们提出了一个机器学习(ML)框架,用于分析接受舒尼替尼抗血管生成治疗的副神经节瘤小鼠模型中,来自正电子发射断层扫描、超快多普勒和计算机断层扫描的代谢 - 解剖 - 血管成像特征。对舒尼替尼治疗组(n = 8,每周成像一次/共6周)和假手术治疗组(n = 8,每周成像一次/共3周)小鼠的随访成像特征进行降维处理,并采用层次聚类分析(HCA)进行分析。从HCA中提取的类别与10个ML分类器一起用于寻找广义的肿瘤分期预测模型,并使用舒尼替尼治疗小鼠的独立数据集进行验证。HCA提供了三个治疗反应阶段,使用表现最佳的ML分类器进行了验证。高斯朴素贝叶斯分类器表现最佳,训练准确率为98.7%,平均曲线下面积为100%。我们的结果表明,代谢 - 解剖 - 血管标志物能够定义反映抗血管生成药物对肿瘤靶点特征疗效的治疗反应轨迹。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5cb/10046832/eeaf7cfe26be/cancers-15-01751-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验