OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Germany.
OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
Radiother Oncol. 2022 Apr;169:96-104. doi: 10.1016/j.radonc.2022.02.020. Epub 2022 Feb 19.
Radiomics analyses have been shown to predict clinical outcomes of radiotherapy based on medical imaging-derived biomarkers. However, the biological meaning attached to such image features often remains unclear, thus hindering the clinical translation of radiomics analysis. In this manuscript, we describe a preclinical radiomics trial, which attempts to establish correlations between the expression of histological tumor microenvironment (TME)- and magnetic resonance imaging (MRI)-derived image features.
MATERIALS & METHODS: A total of 114 mice were transplanted with the radioresistant and radiosensitive head and neck squamous cell carcinoma cell lines SAS and UT-SCC-14, respectively. The models were irradiated with five fractions of protons or photons using different doses. Post-treatment T1-weighted MRI and histopathological evaluation of the TME was conducted to extract quantitative features pertaining to tissue hypoxia and vascularization. We performed radiomics analysis with leave-one-out cross validation to identify the features most strongly associated with the tumor's phenotype. Performance was assessed using the area under the curve (AUC) and F1-score. Furthermore, we analyzed correlations between TME- and MRI features using the Spearman correlation coefficient ρ.
TME and MRI-derived features showed good performance (AUC = 0.72, AUC = 0.85, AUC=0.85) individual tumor phenotype prediction. We found correlation coefficients of ρ=-0.46 between hypoxia-related TME features and texture-related MRI features. Tumor volume was a strong confounder for MRI feature expression.
We demonstrated a preclinical radiomics implementation and notable correlations between MRI- and TME hypoxia-related features. Developing additional TME features may help to further unravel the underlying biology.
放射组学分析已被证明可以基于医学成像衍生的生物标志物来预测放疗的临床结果。然而,这些图像特征所附加的生物学意义通常仍不清楚,从而阻碍了放射组学分析的临床转化。在本手稿中,我们描述了一项临床前放射组学试验,该试验试图建立组织学肿瘤微环境(TME)和磁共振成像(MRI)衍生的图像特征之间的相关性。
共将 114 只小鼠分别移植了耐辐射和辐射敏感的头颈部鳞状细胞癌细胞系 SAS 和 UT-SCC-14。采用不同剂量的质子或光子进行五次分割照射。治疗后进行 T1 加权 MRI 检查,并对 TME 进行组织学评估,以提取与组织缺氧和血管生成相关的定量特征。我们使用留一法交叉验证进行放射组学分析,以确定与肿瘤表型最密切相关的特征。使用曲线下面积(AUC)和 F1 分数评估性能。此外,我们使用 Spearman 相关系数 ρ 分析 TME 和 MRI 特征之间的相关性。
TME 和 MRI 衍生特征在个体肿瘤表型预测方面表现出良好的性能(AUC=0.72,AUC=0.85,AUC=0.85)。我们发现与缺氧相关的 TME 特征与与纹理相关的 MRI 特征之间的相关系数 ρ=-0.46。肿瘤体积是 MRI 特征表达的一个强烈混杂因素。
我们展示了临床前放射组学的实施以及 MRI 和 TME 缺氧相关特征之间的显著相关性。开发更多的 TME 特征可能有助于进一步揭示潜在的生物学机制。