Suppr超能文献

紫外可见光谱、荧光光谱和中红外光谱方法结合化学计量学在苹果醋鉴别的应用

Applications of UV-Visible, Fluorescence and Mid-Infrared Spectroscopic Methods Combined with Chemometrics for the Authentication of Apple Vinegar.

作者信息

Cavdaroglu Cagri, Ozen Banu

机构信息

Department of Food Engineering, Izmir Institute of Technology, 35430 İzmir, Türkiye.

出版信息

Foods. 2023 Mar 8;12(6):1139. doi: 10.3390/foods12061139.

Abstract

Spectroscopic techniques as untargeted methods have great potential in food authentication studies, and the evaluation of spectroscopic data with chemometric methods can provide accurate predictions of adulteration even for hard-to-identify cases such as the mixing of vinegar with adulterants having a very similar chemical nature. In this study, we aimed to compare the performances of three spectroscopic methods (fluorescence, UV-visible, mid-infrared) in the detection of acetic-acid/apple-vinegar and spirit-vinegar/apple-vinegar mixtures (1-50%). Data obtained with the three spectroscopic techniques were used in the generation of classification models with partial least square discriminant analysis (PLS-DA) and orthogonal partial least square discriminant analysis (OPLS-DA) to differentiate authentic and mixed samples. An improved classification approach was used in choosing the best models through a number of calibration and validation sets. Only the mid-infrared data provided robust and accurate classification models with a high classification rate (up to 96%), sensitivity (1) and specificity (up to 0.96) for the differentiation of the adulterated samples from authentic apple vinegars. Therefore, it was concluded that mid-infrared spectroscopy is a useful tool for the rapid authentication of apple vinegars and it is essential to test classification models with different datasets to obtain a robust model.

摘要

光谱技术作为非靶向方法在食品真伪鉴定研究中具有巨大潜力,并且使用化学计量学方法对光谱数据进行评估,即使对于难以识别的情况,如将醋与化学性质非常相似的掺假物混合,也能提供掺假的准确预测。在本研究中,我们旨在比较三种光谱方法(荧光、紫外可见、中红外)在检测醋酸/苹果醋和蒸馏醋/苹果醋混合物(1%-50%)方面的性能。使用这三种光谱技术获得的数据用于通过偏最小二乘判别分析(PLS-DA)和正交偏最小二乘判别分析(OPLS-DA)生成分类模型,以区分正品和混合样品。通过一些校准集和验证集,采用一种改进的分类方法来选择最佳模型。只有中红外数据提供了强大而准确的分类模型,对掺假样品与正品苹果醋的区分具有高分类率(高达96%)、灵敏度(1)和特异性(高达0.96)。因此,得出结论,中红外光谱是苹果醋快速真伪鉴定的有用工具,并且使用不同数据集测试分类模型以获得稳健模型至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a1e/10048337/4e50598c1f1a/foods-12-01139-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验