Suppr超能文献

机器学习在腹部外科手术中指导临床决策的系统文献回顾。

Machine learning to guide clinical decision-making in abdominal surgery-a systematic literature review.

机构信息

Department of General, Visceral, Thoracic and Vascular Surgery, University of Bonn, Bonn, Germany.

Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany.

出版信息

Langenbecks Arch Surg. 2022 Feb;407(1):51-61. doi: 10.1007/s00423-021-02348-w. Epub 2021 Oct 29.

Abstract

PURPOSE

An indication for surgical therapy includes balancing benefits against risk, which remains a key task in all surgical disciplines. Decisions are oftentimes based on clinical experience while guidelines lack evidence-based background. Various medical fields capitalized the application of machine learning (ML), and preliminary research suggests promising implications in surgeons' workflow. Hence, we evaluated ML's contemporary and possible future role in clinical decision-making (CDM) focusing on abdominal surgery.

METHODS

Using the PICO framework, relevant keywords and research questions were identified. Following the PRISMA guidelines, a systemic search strategy in the PubMed database was conducted. Results were filtered by distinct criteria and selected articles were manually full text reviewed.

RESULTS

Literature review revealed 4,396 articles, of which 47 matched the search criteria. The mean number of patients included was 55,843. A total of eight distinct ML techniques were evaluated whereas AUROC was applied by most authors for comparing ML predictions vs. conventional CDM routines. Most authors (N = 30/47, 63.8%) stated ML's superiority in the prediction of benefits and risks of surgery. The identification of highly relevant parameters to be integrated into algorithms allowing a more precise prognosis was emphasized as the main advantage of ML in CDM.

CONCLUSIONS

A potential value of ML for surgical decision-making was demonstrated in several scientific articles. However, the low number of publications with only few collaborative studies between surgeons and computer scientists underpins the early phase of this highly promising field. Interdisciplinary research initiatives combining existing clinical datasets and emerging techniques of data processing may likely improve CDM in abdominal surgery in the future.

摘要

目的

手术治疗的适应证包括权衡获益与风险,这在所有外科领域仍然是一项关键任务。决策通常基于临床经验,而指南缺乏循证背景。许多医学领域都利用了机器学习(ML),初步研究表明其对外科医生工作流程有很大的影响。因此,我们评估了 ML 在以腹部手术为重点的临床决策(CDM)中的当前和未来可能的作用。

方法

使用 PICO 框架,确定了相关的关键词和研究问题。根据 PRISMA 指南,在 PubMed 数据库中进行了系统的搜索策略。根据不同的标准对结果进行过滤,并对选定的文章进行了手动全文审查。

结果

文献综述共发现 4396 篇文章,其中 47 篇符合搜索标准。纳入的患者平均数量为 55843 例。共评估了 8 种不同的 ML 技术,而大多数作者应用 AUROC 来比较 ML 预测与传统 CDM 常规的差异。大多数作者(N=47/47,63.8%)认为 ML 在预测手术的获益和风险方面具有优势。强调将高度相关的参数纳入算法中,以实现更精确的预后,这被认为是 ML 在 CDM 中的主要优势。

结论

一些科学文章证明了 ML 对手术决策的潜在价值。然而,只有少数外科医生和计算机科学家之间的合作研究的出版物数量较少,这表明该领域仍处于早期阶段。结合现有的临床数据集和新兴的数据处理技术的跨学科研究计划,可能会提高未来腹部手术的 CDM。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c38/8847247/cd0be71f05cd/423_2021_2348_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验