Suppr超能文献

慢性神经退行性疾病中 S-谷胱甘肽化 GAPDH 的起源。

Origin of Elevated S-Glutathionylated GAPDH in Chronic Neurodegenerative Diseases.

机构信息

Arkley Research Laboratories, Arkley BioTek, LLC, 4444 Decatur Blvd., Indianapolis, IN 46241, USA.

Eli Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA.

出版信息

Int J Mol Sci. 2023 Mar 14;24(6):5529. doi: 10.3390/ijms24065529.

Abstract

HO-oxidized glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalytic cysteine residues (C(SH) undergo rapid S-glutathionylation. Restoration of the enzyme activity is accomplished by thiol/disulfide S2 displacement (directly or enzymatically) forming glutathione disulfide (G(SS)G) and active enzyme, a process that should be facile as C(SH) reside on the subunit surface. As S-glutathionylated GAPDH accumulates following ischemic and/or oxidative stress, in vitro/silico approaches have been employed to address this paradox. C(SH) residues were selectively oxidized and S-glutathionylated. Kinetics of GAPDH dehydrogenase recovery demonstrated that glutathione is an ineffective reactivator of S-glutathionylated GAPDH compared to dithiothreitol. Molecular dynamic simulations (MDS) demonstrated strong binding interactions between local residues and S-glutathione. A second glutathione was accommodated for thiol/disulfide exchange forming a tightly bound glutathione disulfide G(SS)G. The proximal sulfur centers of G(SS)G and C(SH) remained within covalent bonding distance for thiol/disulfide exchange resonance. Both these factors predict inhibition of dissociation of G(SS)G, which was verified by biochemical analysis. MDS also revealed that both S-glutathionylation and bound G(SS)G significantly perturbed subunit secondary structure particularly within the S-loop, region which interacts with other cellular proteins and mediates NAD(P) binding specificity. Our data provides a molecular rationale for how oxidative stress elevates S-glutathionylated GAPDH in neurodegenerative diseases and implicates novel targets for therapeutic intervention.

摘要

HO-氧化甘油醛-3-磷酸脱氢酶 (GAPDH) 催化半胱氨酸残基 (C(SH)) 迅速发生 S-谷胱甘肽化。通过巯基/二硫键 S2 置换(直接或酶促)形成谷胱甘肽二硫化物 (G(SS)G) 和活性酶,从而恢复酶活性,这一过程应该很容易,因为 C(SH) 位于亚基表面。由于缺血和/或氧化应激后 S-谷胱甘肽化的 GAPDH 积累,体外/计算方法已被用于解决这一悖论。选择性氧化和 S-谷胱甘肽化 C(SH) 残基。GAPDH 脱氢酶恢复动力学表明,与二硫苏糖醇相比,谷胱甘肽是 S-谷胱甘肽化 GAPDH 的无效还原剂。分子动力学模拟 (MDS) 表明局部残基与 S-谷胱甘肽之间存在强结合相互作用。容纳第二个谷胱甘肽进行巯基/二硫键交换,形成紧密结合的谷胱甘肽二硫化物 G(SS)G。G(SS)G 和 C(SH) 的近端硫中心在巯基/二硫键交换共振中保持共价键距离内。这两个因素都预测 G(SS)G 的解离抑制,这通过生化分析得到了验证。MDS 还揭示,S-谷胱甘肽化和结合的 G(SS)G 都显著扰乱了亚基二级结构,特别是在与其他细胞蛋白相互作用并介导 NAD(P) 结合特异性的 S 环区域。我们的数据为氧化应激如何在神经退行性疾病中升高 S-谷胱甘肽化 GAPDH 提供了分子依据,并暗示了新的治疗干预靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c730/10056234/776492379f57/ijms-24-05529-g001.jpg

相似文献

1
Origin of Elevated S-Glutathionylated GAPDH in Chronic Neurodegenerative Diseases.
Int J Mol Sci. 2023 Mar 14;24(6):5529. doi: 10.3390/ijms24065529.
2
S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase induces formation of C150-C154 intrasubunit disulfide bond in the active site of the enzyme.
Biochim Biophys Acta Gen Subj. 2017 Dec;1861(12):3167-3177. doi: 10.1016/j.bbagen.2017.09.008. Epub 2017 Sep 19.
5
Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase.
Cytoskeleton (Hoboken). 2014 Dec;71(12):707-18. doi: 10.1002/cm.21204. Epub 2015 Jan 31.
6
S-glutathionylation of human glyceraldehyde-3-phosphate dehydrogenase and possible role of Cys152-Cys156 disulfide bridge in the active site of the protein.
Biochim Biophys Acta Gen Subj. 2020 Jun;1864(6):129560. doi: 10.1016/j.bbagen.2020.129560. Epub 2020 Feb 14.
7
CP12-mediated protection of Calvin-Benson cycle enzymes from oxidative stress.
Biochimie. 2014 Feb;97:228-37. doi: 10.1016/j.biochi.2013.10.018. Epub 2013 Nov 5.
9
Glyceraldehyde-3-phosphate dehydrogenase inactivation by peroxynitrite.
Arch Biochem Biophys. 1998 Dec 15;360(2):187-94. doi: 10.1006/abbi.1998.0932.
10
Oxidant-induced glutathionylation at protein disulfide bonds.
Free Radic Biol Med. 2020 Nov 20;160:513-525. doi: 10.1016/j.freeradbiomed.2020.08.018. Epub 2020 Aug 30.

引用本文的文献

1
The Role of S-Glutathionylation in Health and Disease: A Bird's Eye View.
Nutrients. 2024 Aug 18;16(16):2753. doi: 10.3390/nu16162753.
2
Neurodegenerative Disease: From Molecular Basis to Therapy.
Int J Mol Sci. 2024 Jan 12;25(2):967. doi: 10.3390/ijms25020967.
3
Robust AMBER Force Field Parameters for Glutathionylated Cysteines.
Int J Mol Sci. 2023 Oct 9;24(19):15022. doi: 10.3390/ijms241915022.

本文引用的文献

1
Mechanism of GAPDH Redox Signaling by HO Activation of a Two-Cysteine Switch.
Int J Mol Sci. 2022 Apr 21;23(9):4604. doi: 10.3390/ijms23094604.
2
Oxidized GAPDH transfers S-glutathionylation to a nuclear protein Sirtuin-1 leading to apoptosis.
Free Radic Biol Med. 2021 Oct;174:73-83. doi: 10.1016/j.freeradbiomed.2021.07.037. Epub 2021 Jul 28.
3
GAPDH siRNA Regulates SH-SY5Y Cell Apoptosis Induced by Exogenous α-Synuclein Protein.
Neuroscience. 2021 Aug 10;469:91-102. doi: 10.1016/j.neuroscience.2021.06.035. Epub 2021 Jun 30.
4
The Writers, Readers, and Erasers in Redox Regulation of GAPDH.
Antioxidants (Basel). 2020 Dec 16;9(12):1288. doi: 10.3390/antiox9121288.
6
An investigation of the correlation between the S-glutathionylated GAPDH levels in blood and Alzheimer's disease progression.
PLoS One. 2020 May 29;15(5):e0233289. doi: 10.1371/journal.pone.0233289. eCollection 2020.
7
The amyloid precursor protein affects glyceraldehyde 3-phosphate dehydrogenase levels, organelle localisation and thermal stability.
Mol Biol Rep. 2020 Apr;47(4):3019-3024. doi: 10.1007/s11033-020-05364-z. Epub 2020 Mar 9.
8
S-glutathionylation of human glyceraldehyde-3-phosphate dehydrogenase and possible role of Cys152-Cys156 disulfide bridge in the active site of the protein.
Biochim Biophys Acta Gen Subj. 2020 Jun;1864(6):129560. doi: 10.1016/j.bbagen.2020.129560. Epub 2020 Feb 14.
9
Glutathionylation primes soluble glyceraldehyde-3-phosphate dehydrogenase for late collapse into insoluble aggregates.
Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):26057-26065. doi: 10.1073/pnas.1914484116. Epub 2019 Nov 26.
10
Nuclear accumulation of GAPDH, GluA2 and p53 in post-mortem substantia nigral region of patients with Parkinson's disease.
Neurosci Lett. 2020 Jan 18;716:134641. doi: 10.1016/j.neulet.2019.134641. Epub 2019 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验