Suppr超能文献

谷胱甘肽化使可溶的甘油醛-3-磷酸脱氢酶为晚期崩溃成不溶性聚集体做好准备。

Glutathionylation primes soluble glyceraldehyde-3-phosphate dehydrogenase for late collapse into insoluble aggregates.

机构信息

Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;

Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, 75005 Paris, France.

出版信息

Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):26057-26065. doi: 10.1073/pnas.1914484116. Epub 2019 Nov 26.

Abstract

Protein aggregation is a complex physiological process, primarily determined by stress-related factors revealing the hidden aggregation propensity of proteins that otherwise are fully soluble. Here we report a mechanism by which glycolytic glyceraldehyde-3-phosphate dehydrogenase of (AtGAPC1) is primed to form insoluble aggregates by the glutathionylation of its catalytic cysteine (Cys149). Following a lag phase, glutathionylated AtGAPC1 initiates a self-aggregation process resulting in the formation of branched chains of globular particles made of partially misfolded and totally inactive proteins. GSH molecules within AtGAPC1 active sites are suggested to provide the initial destabilizing signal. The following removal of glutathione by the formation of an intramolecular disulfide bond between Cys149 and Cys153 reinforces the aggregation process. Physiological reductases, thioredoxins and glutaredoxins, could not dissolve AtGAPC1 aggregates but could efficiently contrast their growth. Besides acting as a protective mechanism against overoxidation, S-glutathionylation of AtGAPC1 triggers an unexpected aggregation pathway with completely different and still unexplored physiological implications.

摘要

蛋白质聚集是一个复杂的生理过程,主要由应激相关因素决定,这些因素揭示了蛋白质隐藏的聚集倾向,否则这些蛋白质是完全可溶的。在这里,我们报告了一种机制,即通过其催化半胱氨酸(Cys149)的谷胱甘肽化,糖酵解甘油醛-3-磷酸脱氢酶(AtGAPC1)被激活形成不溶性聚集体。在滞后阶段之后,谷胱甘肽化的 AtGAPC1 启动自我聚集过程,导致部分错误折叠和完全失活的蛋白质组成的球状颗粒的支链形成。AtGAPC1 活性部位内的 GSH 分子被认为提供了初始的去稳定信号。随后,通过 Cys149 和 Cys153 之间形成分子内二硫键,去除谷胱甘肽,从而加强了聚集过程。生理还原酶,如硫氧还蛋白和谷氧还蛋白,不能溶解 AtGAPC1 聚集体,但可以有效地抑制其生长。除了作为防止过度氧化的保护机制外,AtGAPC1 的 S-谷胱甘肽化还触发了一种具有完全不同且仍未探索的生理意义的意外聚集途径。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验