Wang Ziqi, Lu Nianduan, Wang Jiawei, Geng Di, Wang Lingfei, Yang Guanhua
State Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China.
Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China.
Materials (Basel). 2023 Mar 12;16(6):2282. doi: 10.3390/ma16062282.
The c-axis aligned crystalline indium-gallium-zinc-oxide field-effect transistor (CAAC-IGZO FET), exhibiting an extremely low off-state leakage current (10 A/μm), has promised to be an ideal candidate for Dynamic Random Access Memory (DRAM) applications. However, the instabilities leaded by the drift of the threshold voltage in various stress seriously affect the device application. To better develop high performance CAAC-IGZO FET for DRAM applications, it's essential to uncover the deep physical process of charge transport mechanism in CAAC-IGZO FET. In this work, by combining the first-principles calculations and nonradiative multiphonon theory, the charge trapping and emission properties in CAAC-IGZO FET have been systematically investigated. It is found that under positive bias stress, hydrogen interstitial in AlO gate dielectric is probable effective electron trap center, which has the transition level (ε (+1/-1) = 0.52 eV) above Fermi level. But it has a high capture barrier about 1.4 eV and low capture rate. Under negative bias stress, oxygen vacancy in AlO gate dielectric and CAAC-IGZO active layer are probable effective electron emission centers whose transition level ε (+2/0) distributed at -0.73-0.98 eV and 0.69 eV below Fermi level. They have a relatively low emission barrier of about 0.5 eV and 0.25 eV and high emission rate. To overcome the instability in CAAC-IGZO FET, some approaches can be taken to control the hydrogen concentration in AlO dielectric layer and the concentration of the oxygen vacancy. This work can help to understand the mechanisms of instability of CAAC-IGZO transistor caused by the charge capture/emission process.
c轴取向的晶体铟镓锌氧化物场效应晶体管(CAAC - IGZO FET)具有极低的关态漏电流(约10⁻¹¹ A/μm),有望成为动态随机存取存储器(DRAM)应用的理想候选者。然而,各种应力下阈值电压漂移导致的不稳定性严重影响了该器件的应用。为了更好地开发用于DRAM应用的高性能CAAC - IGZO FET,揭示CAAC - IGZO FET中电荷传输机制的深层物理过程至关重要。在这项工作中,通过结合第一性原理计算和非辐射多声子理论,系统地研究了CAAC - IGZO FET中的电荷俘获和发射特性。研究发现,在正偏压应力下,AlO栅介质中的氢间隙原子可能是有效的电子俘获中心,其跃迁能级(ε(+1/-1)=0.52 eV)高于费米能级。但它具有约1.4 eV的高俘获势垒和低俘获率。在负偏压应力下,AlO栅介质和CAAC - IGZO有源层中的氧空位可能是有效的电子发射中心,其跃迁能级ε(+2/0)分布在费米能级以下-0.73~-0.98 eV和0.69 eV处。它们具有约0.5 eV和0.25 eV的相对较低的发射势垒和高发射率。为了克服CAAC - IGZO FET中的不稳定性,可以采取一些方法来控制AlO介质层中的氢浓度和氧空位浓度。这项工作有助于理解由电荷俘获/发射过程引起的CAAC - IGZO晶体管不稳定性的机制。