Suppr超能文献

基于低密度表面肌电的腕关节康复中无关运动抑制的模式识别

Low-Density sEMG-Based Pattern Recognition of Unrelated Movements Rejection for Wrist Joint Rehabilitation.

作者信息

Bu Dongdong, Guo Shuxiang, Guo Jin, Li He, Wang Hanze

机构信息

School of Life Science, Beijing Institute of Technology, Beijing 100081, China.

Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Micromachines (Basel). 2023 Feb 27;14(3):555. doi: 10.3390/mi14030555.

Abstract

sEMG-based pattern recognition commonly assumes a limited number of target categories, and the classifiers often predict each target category depending on probability. In wrist rehabilitation training, the patients may make movements that do not belong to the target category unconsciously. However, most pattern recognition methods can only identify limited patterns and are prone to be disturbed by abnormal movement, especially for wrist joint movements. To address the above the problem, a sEMG-based rejection method for unrelated movements is proposed to identify wrist joint unrelated movements using center loss. In this paper, the sEMG signal collected by the Myo armband is used as the input of the sEMG control method. First, the sEMG signal is processed by sliding signal window and image coding. Then, the CNN with center loss and softmax loss is used to describe the spatial information from the sEMG image to extract discriminative features and target movement recognition. Finally, the deep spatial information is used to train the AE to reject unrelated movements based on the reconstruction loss. The results show that the proposed method can realize the target movements recognition and reject unrelated movements with an F-score of 93.4% and a rejection accuracy of 95% when the recall is 0.9, which reveals the effectiveness of the proposed method.

摘要

基于表面肌电图(sEMG)的模式识别通常假定目标类别数量有限,并且分类器通常根据概率预测每个目标类别。在手腕康复训练中,患者可能会无意识地做出不属于目标类别的动作。然而,大多数模式识别方法只能识别有限的模式,并且容易受到异常动作的干扰,尤其是对于腕关节运动。为了解决上述问题,提出了一种基于sEMG的无关动作拒绝方法,以使用中心损失来识别腕关节无关动作。在本文中,由Myo臂带收集的sEMG信号用作sEMG控制方法的输入。首先,通过滑动信号窗口和图像编码对sEMG信号进行处理。然后,使用具有中心损失和softmax损失的卷积神经网络(CNN)来描述来自sEMG图像的空间信息,以提取判别特征并进行目标运动识别。最后,利用深度空间信息基于重建损失训练自动编码器(AE)以拒绝无关动作。结果表明,当召回率为0.9时,所提出的方法能够以93.4%的F分数和95%的拒绝准确率实现目标运动识别并拒绝无关动作,这揭示了所提出方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb08/10056026/6891576e6be2/micromachines-14-00555-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验