Suppr超能文献

通过激光烧蚀和热键合实现基于多功能且生物相容的石蜡膜的微流控装置的快速原型制作

Rapid Prototyping of Multi-Functional and Biocompatible Parafilm-Based Microfluidic Devices by Laser Ablation and Thermal Bonding.

作者信息

Wei Yuanyuan, Wang Tianle, Wang Yuye, Zeng Shuwen, Ho Yi-Ping, Ho Ho-Pui

机构信息

Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China.

Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

出版信息

Micromachines (Basel). 2023 Mar 14;14(3):656. doi: 10.3390/mi14030656.

Abstract

In this paper, we report a simple, rapid, low-cost, biocompatible, and detachable microfluidic chip fabrication method for customized designs based on Parafilm. Here, Parafilm works as both a bonding agent and a functional membrane. Its high ultimate tensile stress (3.94 MPa) allows the demonstration of high-performance actuators such as microvalves and micropumps. By laser ablation and the one-step bonding of multiple layers, 3D structured microfluidic chips were successfully fabricated within 2 h. The consumption time of this method (2 h) was 12 times less than conventional photolithography (24 h). Moreover, the shear stress of the PMMA-Parafilm-PMMA specimens (0.24 MPa) was 2.13 times higher than that of the PDMS-PDMS specimens (0.08 MPa), and 0.56 times higher than that of the PDMS-Glass specimens (0.16 MPa), showing better stability and reliability. In this method, multiple easily accessible materials such as polymethylmethacrylate (PMMA), PVC, and glass slides were demonstrated and well-incorporated as our substrates. Practical actuation devices that required high bonding strength including microvalves and micropumps were fabricated by this method with high performance. Moreover, the biocompatibility of the Parafilm-based microfluidic devices was validated through a seven-day cultivation. This reported fabrication scheme will provide a versatile platform for biochemical applications and point-of-care diagnostics.

摘要

在本文中,我们报告了一种基于Parafilm的简单、快速、低成本、生物相容且可分离的微流控芯片制造方法,用于定制设计。在这里,Parafilm既作为粘合剂又作为功能膜。其高极限拉伸应力(3.94兆帕)使得能够展示诸如微阀和微泵等高性能致动器。通过激光烧蚀和多层一步键合,在2小时内成功制造出3D结构化微流控芯片。该方法的耗时(约2小时)比传统光刻法(约24小时)少12倍。此外,聚甲基丙烯酸甲酯-Parafilm-聚甲基丙烯酸甲酯样本的剪切应力(0.24兆帕)比聚二甲基硅氧烷-聚二甲基硅氧烷样本(0.08兆帕)高2.13倍,比聚二甲基硅氧烷-玻璃样本(0.16兆帕)高0.56倍,显示出更好的稳定性和可靠性。在该方法中,多种易于获取的材料如聚甲基丙烯酸甲酯(PMMA)、聚氯乙烯和载玻片被证明并很好地用作我们的基底。通过该方法制造出了包括微阀和微泵在内的需要高键合强度的实用致动装置,且性能良好。此外,基于Parafilm的微流控装置的生物相容性通过为期七天的培养得到了验证。所报道的制造方案将为生化应用和即时诊断提供一个通用平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae6/10054776/7e2cdc1eb9c0/micromachines-14-00656-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验