Galezowski Laura, Recham Nadir, Larcher Dominique, Miot Jennyfer, Skouri-Panet Fériel, Ahouari Hania, Guyot François
Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR, 7590, 75005 Paris, France.
Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 7314, Université de Picardie Jules Verne, 33 Rue Saint Leu, CEDEX 1, 80039 Amiens, France.
Microorganisms. 2023 Feb 27;11(3):603. doi: 10.3390/microorganisms11030603.
Mn(II)-oxidizing organisms promote the biomineralization of manganese oxides with specific textures, under ambient conditions. Controlling the phases formed and their texture on a larger scale may offer environmentally relevant routes to manganese oxide synthesis, with potential technological applications, for example, for energy storage. In the present study, we sought to use biofilms to promote the formation of electroactive minerals and to control the texture of these biominerals down to the electrode scale (i.e., cm scale). We used the bacterium strain MnB1 which can produce manganese oxide in a biofilm. We characterized the biofilm-mineral assembly using a combination of electron microscopy, synchrotron-based X-ray absorption spectroscopy, X-ray diffraction, thermogravimetric analysis and electron paramagnetic resonance spectroscopy. Under optimized conditions of biofilm growth on the surface of current collectors, mineralogical characterizations revealed the formation of several minerals including a slightly crystalline MnOx birnessite. Electrochemical measurements in a half-cell against Li(0) revealed the electrochemical signature of the Mn/Mn redox couple indicating the electroactivity of the biomineralized biofilm without any post-synthesis chemical, physical or thermal treatment. These results provide a better understanding of the properties of biomineralized biofilms and their possible use in designing new routes for one-pot electrode synthesis.
在环境条件下,锰(II)氧化生物促进具有特定纹理的锰氧化物的生物矿化。在更大规模上控制所形成的相及其纹理可能为锰氧化物合成提供与环境相关的途径,并具有潜在的技术应用,例如用于能量存储。在本研究中,我们试图利用生物膜促进电活性矿物的形成,并将这些生物矿物的纹理控制到电极尺度(即厘米尺度)。我们使用了能够在生物膜中产生锰氧化物的细菌菌株MnB1。我们结合电子显微镜、基于同步加速器的X射线吸收光谱、X射线衍射、热重分析和电子顺磁共振光谱对生物膜 - 矿物组件进行了表征。在集流体表面生物膜生长的优化条件下,矿物学表征揭示了几种矿物的形成,包括一种微晶水钠锰矿。在半电池中对锂(0)进行的电化学测量揭示了锰/锰氧化还原对的电化学特征,表明生物矿化生物膜在没有任何合成后化学、物理或热处理的情况下具有电活性。这些结果有助于更好地理解生物矿化生物膜的性质及其在设计一锅法电极合成新途径中的可能用途。