Suppr超能文献

微生物诱导的层状锰氧化物在锂电池中的矿化作用,该层状锰氧化物具有电活性。

Microbially Induced Mineralization of Layered Mn Oxides Electroactive in Li Batteries.

作者信息

Galezowski Laura, Recham Nadir, Larcher Dominique, Miot Jennyfer, Skouri-Panet Fériel, Guyot François

机构信息

Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IRD 206, Paris, France.

Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 7314, Université de Picardie Jules Verne, Amiens, France.

出版信息

Front Microbiol. 2020 Sep 10;11:2031. doi: 10.3389/fmicb.2020.02031. eCollection 2020.

Abstract

Nanoparticles produced by bacteria, fungi, or plants generally have physicochemical properties such as size, shape, crystalline structure, magnetic properties, and stability which are difficult to obtain by chemical synthesis. For instance, Mn(II)-oxidizing organisms promote the biomineralization of manganese oxides with specific textures under ambient conditions. Controlling their crystallinity and texture may offer environmentally relevant routes of Mn oxide synthesis with potential technological applications, e.g., for energy storage. However, whereas the electrochemical activity of synthetic (abiotic) Mn oxides has been extensively studied, the electroactivity of Mn biominerals has been seldom investigated yet. Here we evaluated the electroactivity of biologically induced biominerals produced by the Mn(II)-oxidizer bacteria strain MnB1. For this purpose, we explored the mechanisms of Mn biomineralization, including the kinetics of Mn(II) oxidation, under different conditions. Manganese speciation, biomineral structure, and texture as well as organic matter content were determined by a combination of X-ray diffraction, electron and X-ray microscopies, and thermogravimetric analyses coupled to mass spectrometry. Our results evidence the formation of an organic-inorganic composite material and a competition between the enzymatic (biotic) oxidation of Mn(II) to Mn(IV) yielding MnO birnessite and the abiotic formation of Mn(III), of which the ratio depends on oxygenation levels and activity of the bacteria. We reveal that a subtle control over the conditions of the microbial environment orients the birnessite to Mn(III)-phases ratio and the porosity of the assembly, which both strongly impact the bulk electroactivity of the composite biomineral. The electrochemical properties were tested in lithium battery configuration and exhibit very appealing performances (voltage, capacity, reversibility, and power capability), thanks to the specific texture resulting from the microbially driven synthesis route. Given that such electroactive Mn biominerals are widespread in the environment, our study opens an alternative route for the synthesis of performing electrode materials under environment-friendly conditions.

摘要

由细菌、真菌或植物产生的纳米颗粒通常具有诸如尺寸、形状、晶体结构、磁性和稳定性等物理化学性质,这些性质很难通过化学合成获得。例如,锰(II)氧化生物在环境条件下促进具有特定纹理的锰氧化物的生物矿化。控制它们的结晶度和纹理可能提供与环境相关的锰氧化物合成途径,并具有潜在的技术应用,例如用于能量存储。然而,虽然合成(非生物)锰氧化物的电化学活性已得到广泛研究,但锰生物矿物的电活性尚未得到充分研究。在这里,我们评估了由锰(II)氧化细菌菌株MnB1产生的生物诱导生物矿物的电活性。为此,我们探索了不同条件下锰生物矿化的机制,包括锰(II)氧化的动力学。通过X射线衍射、电子和X射线显微镜以及与质谱联用的热重分析相结合的方法,确定了锰的形态、生物矿物结构和纹理以及有机质含量。我们的结果证明了有机-无机复合材料的形成,以及锰(II)酶促(生物)氧化为锰(IV)生成水钠锰矿与锰(III)非生物形成之间的竞争,其比例取决于细菌的氧化水平和活性。我们发现,对微生物环境条件的微妙控制会影响水钠锰矿与锰(III)相的比例以及组装体的孔隙率,这两者都会强烈影响复合生物矿物的整体电活性。在锂电池配置中测试了其电化学性能,由于微生物驱动的合成路线产生的特定纹理,其表现出非常吸引人的性能(电压、容量、可逆性和功率能力)。鉴于这种电活性锰生物矿物在环境中广泛存在,我们的研究为在环境友好条件下合成高性能电极材料开辟了一条替代途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8df1/7511517/a3146ef79cb8/fmicb-11-02031-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验