Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh 19120, Pakistan.
Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
Molecules. 2023 Mar 9;28(6):2500. doi: 10.3390/molecules28062500.
In recent years, the biological synthesis of silver nanoparticles has captured researchers' attention due to their unique chemical, physical and biological properties. In this study, we report an efficient, nonhazardous, and eco-friendly method for the production of antibacterial silver/silver chloride nanoparticles utilizing the leaf extract of . The synthesis of se-Ag/AgClNPs was confirmed using UV-visible spectroscopy, DPPH free radical scavenging activity, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). An intense peak absorbance was observed at 437 nm from the UV-visible analysis. The extract showed the highest DPPH scavenging activity (89.4%). FTIR analysis detected various bands that indicated the presence of important functional groups. The SEM morphological study revealed spherical-shaped nanoparticles having a size ranging from 20 to 70 nm. The XRD pattern showed the formation of a spherical crystal of NPs. The antibacterial activity performed against showed the maximum inhibition by centrifuged silver nanoparticles alone (se-Ag/AgClNPs) and in combination with leaf extract (se-Ag/AgClNPs + LE) and leaf extract (LE) of 98%, 93%, and 62% respectively. These findings suggested that biosynthesized NPs can be used to control plant pathogens effectively.
近年来,由于银纳米粒子具有独特的化学、物理和生物学性质,其生物合成引起了研究人员的关注。在这项研究中,我们报告了一种利用 的叶提取物生产具有抗菌性能的银/氯化银纳米粒子的高效、无危险和环保的方法。通过紫外-可见光谱、DPPH 自由基清除活性、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和 X 射线衍射(XRD)证实了 se-Ag/AgClNPs 的合成。紫外-可见分析显示,在 437nm 处观察到强烈的峰吸收。提取物表现出最高的 DPPH 清除活性(89.4%)。FTIR 分析检测到各种表明存在重要功能团的谱带。SEM 形态研究表明纳米粒子呈球形,尺寸范围为 20 至 70nm。XRD 图谱显示形成了 NPs 的球形晶体。对 的抗菌活性表明,单独的离心银纳米粒子(se-Ag/AgClNPs)以及与叶提取物(se-Ag/AgClNPs+LE)和叶提取物(LE)组合的抑制效果最大,分别为 98%、93%和 62%。这些发现表明,生物合成的 NPs 可有效用于控制植物病原体。