Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
Molecules. 2023 Mar 9;28(6):2523. doi: 10.3390/molecules28062523.
The rapid, single-stage, flame-spheroidisation process, as applied to varying FeO:CaCO powder combinations, provides for the rapid production of a mixture of dense and porous ferromagnetic microspheres with homogeneous composition, high levels of interconnected porosity and microsphere size control. This study describes the production of dense (35-80 µm) and highly porous (125-180 µm) CaFeO ferromagnetic microspheres. Correlated backscattered electron imaging and mineral liberation analysis investigations provide insight into the microsphere formation mechanisms, as a function of FeO/porogen mass ratios and gas flow settings. Optimised conditions for the processing of highly homogeneous CaFeO porous and dense microspheres are identified. Induction heating studies of the materials produced delivered a controlled temperature increase to 43.7 °C, indicating that these flame-spheroidised CaFeO ferromagnetic microspheres could be highly promising candidates for magnetic induced hyperthermia and other biomedical applications.
快速、单阶段、火焰球化工艺应用于不同的 FeO:CaCO 粉末组合,可快速生产出具有均匀成分、高连通孔隙率和微球尺寸控制的致密和多孔铁磁性微球混合物。本研究描述了致密(35-80 µm)和高多孔(125-180 µm)CaFeO 铁磁性微球的生产。背散射电子成像和矿物解离分析的相关性研究深入了解了微球形成机制,这是作为 FeO/造孔剂质量比和气流设置的函数。确定了加工高度均匀的 CaFeO 多孔和致密微球的优化条件。对所制得材料的感应加热研究将温度可控地升高到 43.7°C,表明这些火焰球化的 CaFeO 铁磁性微球可能是磁致热疗和其他生物医学应用的极具前景的候选材料。